
Physics of Complex Systems, 2023, vol. 4, no. 2  
www.physcomsys.ru

 59

Theoretical physics. Cosmology

Authors
Vitalii D. Vertogradov, ORCID: 0000-0002-5096-7696, e-mail: vdvertogradov@gmail.com
Dmitriy A. Kudryavtsev, e-mail: kudryavtsiev33@gmail.com
For citation: Vertogradov, V. D., Kudryavtsev, D. A. (2023) On the temperature of hairy black holes. Physics of Complex 
Systems, 4 (2), 59–67. https://www.doi.org/10.33910/2687-153X-2023-4-2-59-67 EDN XBRSNM
Received 15 March 2023; reviewed 14 April 2023; accepted 14 April 2023.
Funding: The research was supported by the Russian Science Foundation (Grant No. 22-22-00112).
Copyright: © V. D. Vertogradov, D. A. Kudryavtsev (2023). Published by Herzen State Pedagogical University of Russia. 
Open access under CC BY-NC License 4.0.

Abstract. The gravitational decoupling method represents an extremely useful tool to obtain new solutions 
of the Einstein equations through minimal geometrical deformations. In this paper, we consider a hairy 
charged black hole obtained by the gravitational decoupling and calculate its Hawking temperature in order 
to compare it with the case when the hairs are ignored. We have found out that the hair, under some conditions 
of black hole parameters, affect the Hawking temperature and can increase it. We have also found out that 
the black hole temperature, in the hairy case, does not depend on the electric charge.

Keywords: hairy black hole, Hawking temperature, charged black hole, gravitational decoupling, Einstein’s 
equations
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Introduction

A recent paper (Grib, Pavlov 2022) showed the possibility of phase transition near the event horizon 
of a black hole. However, the critical Hawking temperature (Hawking 1975) near the horizon at which 
the phase transition can happen is reached in the vicinity of the event horizonm, while the radius  
of the region, where this effect is possible, is negligible. When one considers particle collisions,  
the situation becomes better because the center-of-mass energy can grow unboundly in some processes 
(Banados et al. 2009; Grib, Pavlov 2015; Vertogradov 2022; Zaslavskii 2012). The region near the event 
horizon where phase transition can happen is much bigger in comparison to the Hawking temperature 
(Grib, Pavlov 2022). However, one can try to increase the effect caused by the Hawking temperature  
by considering the modification of the standard black hole solution and how these modifications affect 
the black hole temperature.

A well-known theorem in the black hole theory states that a black hole does not have hairs, i. e.,  
it can have only three charges—a mass M, angular momentum j, and electric charge Q. However, it was 
shown that a black hole can have soft hair (Hawking et al. 2016). Recently, it was understood that one 
can obtain a hairy black hole by using the gravitational decoupling method (Contreras et al. 2021;  
Ovalle 2017). In most cases, obtaining new analytical solutions of the Einstein equations is an extremely 
hard task. One can solve these equations, for example, for the spherical symmetry and the perfect fluid 
as a source of gravitation. However, if we consider a more realistic case when the perfect fluid is coupled 
to another matter, it is nearly impossible to obtain the analytical solution. The gravitational decoupling 
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through minimal geometrical deformation shows the possibility of decoupling two gravitational sources. 
One can write the energy-momentum tensor as: 

  (1)

where  is the energy-momentum tensor of the perfect fluid and α is the coupling constant to the 
energy-momentum tensor Θik. It is possible to solve Einstein’s field equations for a gravitational source 
whose energy-momentum tensor is expressed as (1) by solving Einstein’s field equations for each component 

 and Θik separately. Then, by a straightforward superposition of the two solutions, we obtain  
the complete solution corresponding to the source Tik. Since the Einstein equations are not linear, this 
method is effective for the analysis of the solution. It is an especially important tool when one faces  
the realistic cases, i. e., the stars and collapsing objects whose interior matter is far from the ideal perfect fluid.

By applying this method, a new modification of the Schwarzschild black hole was obtained  
(Ovalle et al 2018; 2021). These black hole solutions satisfy the strong and dominant energy conditions 
in the whole region from the event horizon up to infinity. All these solutions have been obtained by small 
deformations of the Schwarzschild vacuum. The hairy analogy of the Kerr spacetime has been obtained 
in (Mahapatra, Banerjee 2023). A more realistic case, i. e., the deformation of dynamical background 
was obtained in (Vertogradov, Misyura 2022).

In this paper, we consider the Hawking temperature for a hairy charged Reissner-Nordstrom black 
hole obtained by gravitational decoupling through minimal geometrical deformation. We also discuss 
how it deviates from the black hole when the hairs are ignored. All these models represent a black hole 
supported by a non-linear electrodynamics.

This paper is organized as follows: in Section 2 we briefly discuss two methods of obtaining  
the Hawking temperature for a general spherically-symmetric black hole. In Section 3 we explicitly 
calculate the Hawking temperature for the Reissner-Nordstrom black hole. In Section 4 we consider 
three models of a hairy black hole and their temperature and compare these results with a no-hair 
solution. Section 5 provides conclusions and discusses further research. The system of units c = G = 1 
will be used throughout the paper. Also, we shall adopt the signature − , + , + , +. 

Black hole thermodynamics

In this section we review the basic concepts related to the black hole thermodynamics. For more 
useful and thorough discussion on this subject, see, for example, the review in (Carlip 2009). We consider 
a spherically-symmetric line element in the form: 

  (2)

where a lapse function f = f (r) depends upon radial coordinate r, dΩ2 = dθ2 + sin2 θdφ2 is the metric 
of a unit two-sphere. To describe black holes, it is convenient to write (2) in the form: 

  (3)

Here, we can refer to the function b (r) as the shape function which specifies the shape of the spatial 

slice. In the limit  the shape function can be interpreted as asymptotic mass 2M.  

We assume the asymptotic flatness for all models considered in this paper. Metric (3) has horizons  

at b(rh) = rh. This equation might have several roots but only the outermost horizon is of the major interest 

and we will consider only this one. We are interested in the case when ∀r > rh → b(r) < r and . 

The case  corresponds to an extremal black hole for which the Hawking temperature is zero 

(Visser 1992). This case will not be considered within this paper. The Hawking temperature is given by: 
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  (4)

where kb is the Boltzmann constant, Th is the Hawking temperature and ϰ is the surface gravity which, 
for metric (2), has the form: 

  (5)

Substituting a lapse function in form (3), one obtains: 

  (6)

where a dash corresponds to the derivative with respect to the radial coordinate r.
Another way to obtain the Hawking temperature is to use Euclidean signature techniques. By the 

formal transformation to the imaginary time t → it, we get: 

  (7)

Again, we are interested in the outermost horizon at r = rh and discard the whole r < rh region. 
Furthermore, we assume the lapse function f in the form given by (3) and also demand that a black hole 
is not an extremal one. Taylor expand near the horizon gives: 

  (8)

Substituting (8) into (7), one obtains: 

  (9)

By introducing a new variable R: 

  (10)

one can transform metric (9) to obtain: 

  (11)

The (t, R) part of this metric is similar to a flat two-plane in polar coordinates, with imaginary  

time t serving as the angular coordinate. In order to avoid a conical singularity, one should demand that 

 has a period 2π, i. e., t has a period β which is given by: 

  (12)

According to (Gibbons, Hawking 1977), this imaginary time t is interpreted as the existence  
of the thermal bath of a temperature , which explicitly gives: 
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  (13)

which coincides with (4).

The Hawking temperature of the Reissner-Nordstrom black hole

In this section we will apply the method described in the previous section to the Reissner-Nordstrom 
solution which describes a charged static black hole. The result of this section is well-known and can be 
found, for example, in (Brown et al. 1994; Poisson 2007; Visser 1992). We rederive these results only  
in order to compare them with hairy black holes.

Here and in what follows, we will use the system of units kb = ℏ = 1. The lapse function f (2) in the 
Reissner-Nordstrom case is given by: 

  (14)

The shape function b (r) (3) and its derivative are given by: 

  (15)

The Reissner-Nordstrom black hole has two horizons which are located at: 

  (16)

Here, as we stated above, we are interested only in the outermost horizon, so that rh = r+. The cases 
Q2  > M2 and Q2 = M2, which correspond to a naked singularity and an extremal Reissner-Nordstrom 
black hole, will not be considered in this paper.

The surface gravity ϰ at the horizon is given by: 

  (17)

And the Hawking temperature is: 

  (18)

Note, that in the extremal case M2 = Q2, the horizon is located at rh = M, which gives .

Thermodynamics of hairy black holes

Using the gravitational decoupling method, a recent paper (Ovalle et al. 2021) introduced a new 
solution which describes the exterior geometry of hairy black holes. In this section, we will calculate  
the Hawking temperature and compare the results with a usual Reissner-Nordstrom black hole in order 
to find out how primary hairs affect the Hawking temperature.

Model 1
This model can be interpreted as a black hole supported by a non-linear electrodynamics. The other 

two models can be obtained from this model by defining the electric charge Q as a function  
of the Schwarzschild mass M and primary hairs α and l0 = αl.

The lapse function f for Model 1 is given by: 

  (19)

Here, μ = M + l0 / 2, M is the Schwarzschild mass, α is the coupling constant and l0 = αl is the pri-
mary hair, Q can be interpreted as the electric charge of a black hole. The influence of the geodesic  
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motion of primary hairs was studied in (Ramos et al. 2021). The influence of these parameters  
for the thermodynamics properties in a hairy Schwarzschild black hole was investigated in (Cavalcanti 
et al. 2022). The shadow properties of hairy black hole are covered in (Vagnozzi et al. 2022). The Schwar-
zschild solution is the limit of α → 0.

The event horizon equation is given by f (rh ) = 0, which can be solved with respect to l0 to give: 

  (20)

We have several restrictions on the parameters. First of all, one should realize that like in the pure 
Reissner-Nordstrom case, one should impose certain conditions on the parameters in order to avoid  
a naked singularity in the usual Reissner-Nordstrom case. They include M and charge Q - M2 ≥ Q2. 
However, the condition M2 = Q2 is not forbidden because in this case the hairy black hole (19) is not an 
extremal one. Also, this model satisfies the dominant energy condition only when r ≥ 2M, so we do not 
consider the region 0 ≤ r ≤ 2M and demand rh ≥ 2M to satisfy the energy condition. The fulfilling of the 
dominant energy condition also imposes the following restrictions on the parameters Q and l: 

  (21)

The Hawking temperature (4)  is given in terms of the surface gravity ϰ which for this model 
reads: 

  (22)

So the Hawking temperature is: 

  . (23)

Fig.1 is plotted for M = 1, α = 0.5, Q = 0.9. This figure shows the dependence of the primary hair l0 on 
the horizon location (a blue curve). The horizontal red line corresponds to . We see that  
at rh ≥ 2.061 the dominant energy condition is always held. 

Fig. 1. The event horizon function
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Fig. 2 shows the dependence of the Hawking temperature Th on the horizon location. Three horizontal 
lines correspond to the Hawking temperature of a usual Reissner-Nordstrom black hole. We have picked up 
the following parameters for horizontal lines: M = 1, Q = 0.5 (a red line); Q = 0.9 (a green line) and  
Q = 0.99 (an orange line). In this model, the Hawking temperature of a hairy black hole does not depend 
on the electric charge Q and is the function only of mass M, coupling constant α = 0.5 and horizon 
location rh, i. e., Th ≡ Th (M, α, rh) (the corresponding curve is blue). We can easily see that at rh ∈ (2.061, 0.212) 
for Q = 0.; rh ∈ (2.061, 2.481) rh ∈ (2.061, 2.481) for Q = 0.9 and rh ∈ (2.061, 4.583) for Q = 0.99,  
the Hawking temperature is higher than for a usual Reissner-Nordstrom black hole. It means that  
in these cases the phase transition, which can happen near the event horizon, can be fairer than  
in a no-hair black hole. One can also see that when one considers an extremal Reissner-Nordstrom black 
hole, then the Hawking temperature is absent but in the hairy case it is not zero. So, we can conclude 
that for the first model the primary hairs can increase the Hawking temperature in comparison with  
the usual Reissner-Nordstrom case. 

Fig. 2. The Hawking temperature. Model 1

Model 2
As we stated in the previous subsection, the ensuing models differ from the first one by the appropriate 

choice of the function Q. In this model Q is given by: 

  (24)

Substituting this into (19), one obtains: 

  . (25)

For this choice of the charge function the horizon equation is: 

  (26)

Like in the previous subsection, the Hawking temperature is given in terms of the first derivative  
of the lapse function f ’, which in this case reads: 
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  (27)

In this model, the dominant energy condition is always held for r ≥ 2. Again, like in the first model, 
the Hawking temperature, after substituting l0, does not depend on the electric charge of a hairy black 
hole. 

Fig. 3 shows how the Hawking temperature TH depends on the event horizon location rh. The choice 
of the parameters is like in the first model. Fig. 3 differs from Fig. 2 only by the blue curve, which 
corresponds to the Hawking temperature of a hairy black hole. From the figure, one can see that  
the temperature of a hairy black hole is always less than in a no-hair case. The only exception  
is an extremal Reissner-Nordstrom black hole. So we can conclude that one can consider a bigger region 
where phase transition can happen only for an extremal Reissner-Nordstrom black hole. In other cases, 
the region is smaller than in a no-hair case.

Fig. 3. The Hawking temperature. Model 2

Model 3
For the last model, which we consider within this paper, the charge function is given by: 

  (28)

Its substitution into the lapse function f (19), gives us: 

  (29)

The horizon in this model is located at: 

  (30)
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The first derivative of the lapse function, which gives the main contribution to the Hawking temperature, 
reads: 

   . (31)

In this model, the dominant energy condition is held when rh > 2.067. It should not be a surprise that 
for this model the Hawking temperature does not depend on the electric charge of a hairy black hole 
again.

Fig. 4 is plotted for the same parameters as in the two previous cases and shows the Hawking temperature 
TH as the function of the event horizon location rh. From the figure, one can see that the hairy black hole 
temperature at rh ∈ (2.067, 2.074 for Q = 0.5; rh ∈ (2.067, 2.444) for Q = 0.9 and rh ∈ (2.067, 4.583)  
for Q = 0.99, respectively, is bigger than in a no-hair Reissner-Nordstrom black hole. This model shows 
that under the proper choice of parameters, the region where the phase transition can take place is bigger 
than in a usual charged black hole. 

Fig. 4. The Hawking temperature. Model 3

Conclusions

In this paper, we have derived the Hawking temperature of the hairy charged black holes by gravitational 
decoupling. These black holes can be interpreted as ones supported by a non-linear electrodynamics. 
The main analytical result obtained within this paper is that the Hawking temperature does not depend 
on the electric charge Q of a hairy black hole.

We have considered three models and showed that the Hawking temperature is not zero in the case 
of an extremal no-hair Reissner-Nordstrom black hole. However, in the second model, the Hawking 
temperature of the hairy charged black hole is always less than one in the case of a non-extremal no-hair 
charged black hole. For the first and third models, we showed that under a certain choice of primary 
hairs, one can obtain the black hole temperature higher than in a non-extremal no-hair Reissner-Nordstrom 
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black hole. It means that the region, where the phase transition can take place in the first and the third 
models, is bigger than the one in a usual charged black hole.

Further research will focus on the entropy, heat capacity and stability of the hairy black hole. It will 
also identify the exact value of r at which the phase transition can take place. Besides, our follow-up 
papers will investigate particle collisions, corresponding temperature and how hairs of a black hole affect 
collision.
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