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Interaction of subsystems in nonlinear dynamics problems. 
Various phases of chaos

A. V. Liaptsev1

1 Herzen State Pedagogical University of Russia, 48 Moika Emb., Saint Petersburg 191186, Russia

Abstract. A model of two interacting dissipative subsystems described by equations of nonlinear dynamics 
is considered. Each of the subsystems is a nonlinear oscillator driven by an external periodic field.  
The numerical calculation shows that chaotic oscillations can occur in this system. Their phase trajectories 
are described by a chaotic attractor in the limit of large times. It is shown that due to the symmetry  
of the system, different initial conditions can lead to different chaotic attractors. An analogy is discussed 
between various strange attractors of this model and different phases of matter in systems with a large 
number of particles.
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Introduction

One of the characteristic features of systems described by nonlinear dynamics equations  
is the appearance of chaotic motion. In particular, in dissipative systems, the trajectory of a system  
in phase space may tend to a set of points called a chaotic (strange) attractor (Grinchenko et al. 2017; 
Malinetsky, Potapov 2000; Sagdeev et al. 1988; Schuster 1984). Chaos in such systems is interspersed 
with regular (periodic) movement when some parameters change. The corresponding parameters are 
called control parameters.

Note that the appearance of chaotic states is caused exactly by the nonlinearity of systems  
of differential equations and manifests itself in physical systems that are not described by the equations 
of classical dynamics. Currently, the methods of modern micro- and nanotechnology have made  
it possible to create objects with unusual electromagnetic properties, the so-called metamaterials 
(Soukoulis, Wegener 2010; Zheludev 2010). Among them of special interest are: 2D supercrystals  
of semiconductor quantum dots (Evers et al. 2013) and super crystals synthesized on the basis of aromatic 
2D polymers (Liu et al. 2017). To date, the optical properties of these objects, especially nonlinear 
ones, including chaotic dynamics, are a promising and little-studied avenue of research (Ryzhov et al. 
2017; 2021). In these nonlinear dynamical systems, under conditions of a degenerate doublet state,  
the problem can be reduced (if there are appropriate conservation laws) to the Duffing equation. 
Nonlinear optical dynamics based on quasi-resonator superradiance of a two-layer system with active walls 
(doped Λ-emitters) can be reduced to a system of two coupled Duffing oscillators considered in this article.

Chaotic motion in such systems has some features in many ways similar to the features in systems 
with a large number of particles. In particular, similarly to systems with a large number of particles,  
the states of chaotic systems in question can be described in terms of probability by defining the concept 
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of probability density. As is in systems with a large number of particles, the probability density determines 
the probability of finding the system in a given region of phase space (Kuznetsov 2006; Liapzev 2019). 
For systems with some nontrivial symmetry, the probability density is transformed in accordance with 
a fully symmetric representation of the corresponding symmetry group (Liaptsev 2013; 2014).

Continuing the analogy between the chaotic state of a dissipative system described by a nonlinear 
dynamic equation and a system with a large number of particles, it can be noted that a strange attractor 
is analogous to the equilibrium state of a system with a large number of particles. This means that, 
regardless of the initial state, over time, systems tend to some equilibrium state described by some 
probability density function. It is the independence from the initial state that makes it possible  
to determine the chaotic attractor in problems of nonlinear dynamics. However, referring to systems 
with a large number of particles, one can find examples when, under the same external conditions,  
the existence of several equilibrium states with different properties is possible. In such cases, the states 
correspond to different phases.

A typical example is the states arising during the transition from the gas phase to the liquid phase, 
described by isotherms of a real gas (Fig. 1).

Fig.1. Isotherms of a real gas

In the interval of the isotherm described by the straight BC, the state is characterized  
by the equilibrium of two phases — liquid and gas. However, along with this stable state, states with  
a single phase are possible in intervals CC1 and BB1. This is the so-called “supercooled vapor” in the 
BB1 interval and “superheated liquid” in the CC1 interval. These states are less stable than the states  
on the BC line, and can only be obtained with an adiabatic change in the system parameters from some other 
states (Kondepudi, Prigogine 2015). In this paper, we consider a model of a dissipative system described  
by equations of nonlinear dynamics, the state of which may tend to various chaotic attractors depending 
on the initial states of the system. This is equivalent to the existence of states with different phases under 
the same conditions in systems with a large number of particles.

Formulation of the model

One of the systems in which chaos is observed is a model of a nonlinear oscillator driven by external 
periodic force. Such systems are described by the Duffing equation:

 3( ) ( ) ( ) ( ) sin( )x t x t x t x t F tγ α β ω+ − + =  . (1)

In this equation, the variable x describes the oscillations, the points above the variable are the standard 
notation of time derivatives, the parameters α and β determine the shape of the oscillator potential.  
In particular, at α > 0 and β > 0, the so-called W-potential appears. The parameter γ characterizes  
the value of dissipation, and the parameters F and ω the amplitude and frequency of external action.  
A real system corresponding to this model can be a load that is located in the upper part of an elastic 
rod and swings in one plane to an external force (Fig. 2). 
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Fig. 2. A real system corresponding to the Duffing equation

Next, we will consider a model of two spring-coupled nonlinear oscillators (Fig. 3).

Fig. 3. A model of two oscillators connected by a spring

The stiffness of the spring k characterizes the magnitude of the interaction of subsystems. At k → 0,  
the interaction of subsystems disappears. We will also assume that an external force acts vertically. 
In the case of a pendulum, the moment of such force is proportional to sin(x), where x is the angle  
of deviation from the vertical. To take into account the bending of the rod, we will model the moment 
of external force proportional to sin(px), where p is some constant. As a result, the system of dynamic 
equations for the formulated model takes the form:

3
1 1 1 1 1 1 2

3
2 2 2 2 2 2 1
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sin( )sin( ) ( ).
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This system of equations can be written as an autonomous system of 1st order differential equations:
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The variables v1 and v2 are the velocities corresponding to the coordinates x1 and x2. The numerical 
calculation shows that this system of nonlinear differential equations has chaotic solutions for some 
parameter values. The set of points in the 5-dimensional phase space, to which the trajectory of this 
solution tends at large times, represents a chaotic attractor. In accordance with what was said above,  
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the state in phase space can be characterized by a probability density � �( , , , , )x x v v1 2 1 2   determined  
in such a way that the probability of finding a system in a small volume of phase space� � � � �x x v v1 2 1 2 �    
is equal to:

 1 2 1 2 1 2 1 2( , , , , )w x x v v x x v vρ ϕ ϕ∆ = ∆ ∆ ∆ ∆ ∆ .  (3)

The probability density satisfies a partial differential equation of the 1st order (Liapzev 2019) (see also 
(Kuznetsov 2006)), which takes the following form for the system of equations (2):
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Analysis of particular solutions

Note, first of all, that the system of equations (2) has a trivial solution x x v v t1 2 1 2 0� � � � �, � � x x v v t1 2 1 2 0� � � � �, � � , 
which is realized under initial conditions x x v v1 2 1 20 0 0 0 0 0( ) ( ) ( ) ( ) ( )� � � � �� . In the special 
case k=0, depending on the initial conditions, one of the subsystems may have an identically 
zero solution, and the second may have some non-zero solution, including a chaotic solution.  
These solutions, the initial conditions under which they are implemented, as well as the form of the solution 
for the probability density of the state in the case when one of the solutions is chaotic, are given in Table 1. 
In all cases � �( )t t� .

Table 1. Probability density depending on initial conditions

№ Solutions Initial conditions
Probability density of the state
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The right column of the table shows the standard designation for δ-function. The numerical 
calculation under the initial conditions given in the table confirms the existence of chaotic solutions 
satisfying the relations given in the table.

Symmetry properties of equations and solutions

A simple analysis allows us to determine the symmetry properties of the system of equations (2). 
Namely, the system of equations remains invariant with simultaneous replacement of indices and 
inversion of variables xi and vi. For linear systems of equations, certain relations for solutions of this 
system follow from such symmetry. In this case, the symmetry properties also allow us to obtain some 
properties of solutions. To obtain these properties, we introduce symmetric xs and antisymmetric xa 
coordinates and corresponding velocities:

 1 2 1 2 1 2 1 2, , , .
2 2 2 2s a s a

x x x x v v v vx x v v− + − +
= = = =  (5)

The above symmetry transformations leave symmetric variables invariant and change the sign  
of antisymmetric variables. 

The system of equations (2) for the new variables takes the form:

 3

3
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=
=
= + − −
= + − − −
=











 (6)

Obviously, in the special case k=0, solutions 3 and 4 given in Table 1 correspond to zero 
symmetric and antisymmetric solutions. However, from the analysis of the system of equations (6), 
more general conclusions that are valid for all values of parameter k can be deduced. Namely, under 
initial conditions (0) (0) 0s sx v= = , solutions are possible in which only antisymmetric variables are 
different from zero 0, 0a ax v≠ ≠0, 0a ax v≠ ≠ . The obtained solutions, among which there can be both regular 
and chaotic solutions, do not depend on the parameter k. On the contrary, under initial conditions 

(0) (0) 0a ax v= = , solutions are possible in which only symmetric variables are different from zero 
0, 0s sx v≠ ≠0, 0s sx v≠ ≠ . Note that the above symmetry transformation and the identity transformation form 

a symmetry group isomorphic to the point symmetry group C2. The probability density 1 2 1 2( , , , , )x x v vρ ϕ  
for any of the above solutions is transformed by the fully symmetric representation of this 
group. This means that equality � � � �( , , , , ) ( , , , , )� � � � �x x v v x x v v2 1 2 1 1 2 1 2  or equality  
� � � �( , , , , ) ( , , , , )� � �x x v v x x v va s a s a s a s for the variables xa, xs, va, vs is fulfilled.

Analysis of numerical solutions

Numerical calculations were carried out as follows. At the first step, the system of differential 
equations was numerically solved under given initial conditions over a time interval from 0 to 10T, where 
T is the period of the driving force. At each of the periods, the values of the variables were calculated  
in increments of T/360. The final state was the initial state for the next interval of 10 periods  
of the driving force. Then the actions were repeated N times. The number N could be varied.  
The calculations below correspond to the values of N = 1000, that is, the full-time interval corresponded 
to 10,000 periods of the driving force. 

Under arbitrary initial conditions, both symmetric and antisymmetric oscillations were excited. 
The calculations were carried out starting from the parameter k = 0 followed by a further increase  
of this parameter and preservation of the remaining parameters. The calculations have shown that 
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with an increase in the value of k, the amplitude of symmetric oscillations decreased on average, and 
the amplitude of antisymmetric oscillations increased. To quantify this effect, the average volumes  
of phase space occupied by symmetric and antisymmetric oscillations were calculated. These volumes 
were defined by calculating the following averages:

 2 2 2 2,s si si a ai aiV x v V x v= + = + , (7)

where the index i numbers the values of variables in the arrays obtained during the calculations.
Fig. 4 shows graphs of the dependence of Vs and Va values under arbitrary initial conditions, denoted 

as Vsrand and Varand. When constructing the graphs, the results obtained with the values of the variable k 
for regular (periodic in time) solutions were not taken into account.

Fig. 4. Results of the numerical calculation

As can be seen from the graphs, the values of Varand(0) and Vsrand(0) (no interaction of subsystems) 
are approximately the same. As the value of k increases (the spring stiffness increases), the values  
of Varand(k) increase, and the values of Vsrand(k) decrease, although the corresponding dependencies 
are not monotonic. At the same time, the sum of Varand(k) + Vsrand(k) remains approximately constant. 
At values 0.8k ≥ , the oscillations become completely antisymmetric: Vsrand(k) = 0. This corresponds 
to the fact that the subsystems are rigidly connected and move as a whole. The solutions Varand(k) and 
Vsrand(k) are stable, that is, under different initial conditions, the obtained values coincide. It should 
also be noted that there is a range of values [0.16,0.22]k ∈  for which Vsrand(k) turns to zero, that is,  
the oscillations become asymmetric. 

A qualitatively different nature of solutions is obtained if the initial states correspond to a symmetric  
( (0) (0) 0a ax v= = ) or an antisymmetric ( (0) (0) 0s sx v= = ) state. For the antisymmetric initial state, the 
numerical solutions obtained do not depend on the values of the parameter k, which corresponds to the 
above qualitative analysis. This means that ( ) , ( ) 0Va k const Vs k= = ( ) , ( ) 0Va k const Vs k= = . The corresponding graph Va(k) is 
shown in Fig. 4 as a straight line (Vaasym). For the symmetric initial state, the numerical calculation gives 
the result Va(k) = 0 and monotonically decreasing Vs(k) dependencies, shown in Fig. 4 in the notation 
Vssym. In the range of values [0.39,0.48]k ∈ , the solutions of the system of differential equations become 
regular with the amplitude decreasing with an increase in the value of k. For even larger values of k, the 
solutions become chaotic with a small amplitude, so that Vs(k) ≈ 0. 
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Unlike the solutions obtained under arbitrary initial conditions, symmetric (Vssym) and antisymmetric 
(Vaasym) solutions are unstable. This instability can be detected as follows. As mentioned above,  
the calculation was carried out in such a way that the final state obtained by solving a system of equations 
at a certain time interval is the initial state at the next time interval. If the final state is changed to the 
value of machine precision and taken as the initial state at the next stage, then with further calculation, 
the state of the system loses its initial symmetry. That is, if at some value of k the system was in a state 
where only a symmetric oscillation was excited (the Vssym branch in Fig. 4), or only an antisymmetric 
oscillation (Vaasym branch in Fig. 4), then the system jumps into a state in which 0, 0Va Vs≠ ≠ 0, 0Va Vs≠ ≠   
(Varand and Vsrand branches in Fig. 4). Such a transition is equivalent to the transition between the states 
of a real gas, when instead of an overheated liquid or supercooled gas, a state in the form of a mixture 
of liquid and gas phases occurs.

In systems described by equations of nonlinear dynamics, another important property, similar to 
what occurs in systems with a large number of particles, is manifested. Namely, with an adiabatic change 
of parameters, some properties of the system are described by various dependencies with decreasing 
and increasing parameters. In systems with a large number of particles, the corresponding property 
is called “hysteresis”. The simplest examples of the manifestation of hysteresis in nonlinear dynamics 
problems can be used in the educational process (task 2.9 from the textbook (Kondratyev, Liaptsev 
2008)).  In the model considered here, the phenomenon of hysteresis manifests itself with an adiabatic 
change in the parameter k. The adiabatic change of the parameter means that when the calculation  
is completed with some parameter k, the resulting final state is used as the initial state for the calculation 
with the parameter k k+ ∆ . An example of hysteresis in the system considered in our work are  
the calculations whose results are shown in Fig. 4. In particular, if we start the calculation with the value 
k = 0.1 under unsymmetric initial conditions, when both symmetric and antisymmetric oscillations  
( 0, 0a sV V≠ ≠0, 0a sV V≠ ≠ ) are excited, and then adiabatically increase the parameter k, as described above,  
we can come to a region [0.16, 0.22]k∈ , where only the antisymmetric oscillation is different from zero, 
that is, Vs  =  0. If the parameter k is then reduced adiabatically, the state of the system will change 
so that, as before, the symmetric oscillation turns out to be unexcited. The diagram illustrating  
the above explanation is shown in Fig. 5.

Fig. 5. A diagram illustrating the manifestation of hysteresis with an adiabatic change in the parameter k

Similar manifestations of hysteresis are processes on the isotherm of a real gas (Fig. 1). If, at the initial 
state (a mixture of gas and liquid on a rectilinear section of the CB isotherm), the volume is increased, 
then at point B the system is in a homogeneous gas state. If you then slowly reduce the volume, you can 
get superheated steam, that is, start moving along the section of the BB1 isotherm.
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Conclusions

Returning to the discussion of the analogy of the chaotic solutions obtained with the state of a real 
gas, the following analogies can be stated. 

1) For an arbitrary initial state of the system under consideration, the solution corresponding  
to chaotic oscillations is a mixture of symmetric and antisymmetric oscillations. This is analogous 
to the fact that the state of the real gas in the BC isotherm region (Fig. 1) is a mixture of liquid 
and gaseous phases.

2) When the parameter k is changed, the contribution of symmetric and antisymmetric oscillations 
changes up to the moment when the contribution of symmetric oscillations becomes zero.  
This is analogous to the fact that when the volume of a real gas changes, the proportion of liquid 
and gas changes, too, and only one of the phases remains at points B or C (Fig. 1).

3) The “coexistence” of phases, that is, the state in which 0, 0,Va Vs≠ ≠0, 0,Va Vs≠ ≠ is stable, similarly  
to the stable state of the real gas at the BC region.

4) In addition to the stable state as a “mixture of phases” ( 0, 0Va Vs≠ ≠0, 0,Va Vs≠ ≠ ), there are unstable states 
formed under specific initial conditions (symmetric or antisymmetric initial state).  
An analog for the isotherm of a real gas is the presence of states with overheated liquid or super-
cooled gas.

These analogies indicate the possibility of the existence of various phases of a chaotic state in systems 
described by equations of nonlinear dynamics.
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