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Introduction

There are various methods to characterize the nonlinear and chaotic dynamics of physical systems. 
For example, one method involves plotting the power spectrum versus finite applied frequencies, where 
the nonlinear properties are revealed through the structures, positions, and intensities of the spectrum 
peaks (Dykman et al. 1988). The other methods include plotting phase portraits, Poincaré sections, and 
calculating the Lyapunov exponents (Baker, Gollub 1996; Goldstein et al. 2002; Marion, Thornton 1995; 
Strogatz 2015). In the phase portraits method, the shape of the curves and their overlap indicates the 
periodic responses of dynamical systems to external driving forces. Poincaré sections, on the other hand, 
are periodic snapshots of phase portraits, providing further insight into the behavior of nonlinear systems 
through the distributions and overlap of points in the 2D plots generated by these sections. The Lyapunov 
exponents method involves calculating the rate of exponential divergence of neighboring phase trajectories. 
The Lyapunov exponents greater or less than zero serve as hallmarks of chaotic or periodic responses, 
respectively, of the system states with respect to driving forces. Among these methods, the Lyapunov 
exponent is an important indicator for understanding the chaotic dynamics of physical systems.  
By combining these methods, a clearer picture of the dynamical responses of the system can be obtained. 
In this paper, we adopt a combination of methods by calculating the Lyapunov exponent and utilizing 
phase portraits to analyze selected parameters.
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Abstract. This paper investigates the influence of the amplitude, frequency, and damping of the applied field 
on the maximal Lyapunov exponents and chaotic dynamics in the bulk antiferroelectric (AFE) system. 
Numerical simulations are conducted in three parts. First, Wolf ’s algorithm calculates the Lyapunov exponents 
with varying frequencies and a constant amplitude. The second part varies the amplitude while keeping  
the frequency constant. Two sets of data are generated for small (g = 0.01) and large (g = 0.3) damping values. 
In the third part, selected parameters produce phase portraits based on the positive and negative Lyapunov 
exponents using the fourth-order Runge–Kutta method. The results show that the Lyapunov exponent 
identifies chaotic and periodic regimes with small damping, but this becomes less evident with large damping. 
The study also demonstrates that manipulating the applied field parameters enables control over chaotic 
and periodic responses in the bulk AFE system.
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There are numerous methods available to determine the Lyapunov exponents. Some of these methods 
include the fast Lyapunov indicator, which computes the average of the largest Lyapunov exponent 
obtained from orthonormal basis tangent vectors in the phase space of the dynamical system (Lega et 
al. 2016). Ulam’s method is used to calculate the maximal Lyapunov exponent for one-dimensional 
systems under small perturbations (Benettin et al. 2018). Another method involves calculating the finite 
size Lyapunov exponent based on averaging the finite amplitude growth rate of the dynamical physical 
system (Meunier, LaCasce 2021). Wolf ’s algorithm is employed to estimate the Lyapunov exponents  
for analytically defined time series model systems (Wolf et al. 1985). In this paper, we adopt Wolf ’s 
algorithm to calculate the Lyapunov exponents of bulk antiferroelectrics (AFE) (Wolf et al. 1985).

The research presented in this paper is an extension of (Lim 2022), focusing on investigating  
the effects of frequency, amplitude of the driving field, and damping in antiferroelectrics on the maximal 
Lyapunov exponents and nonlinear chaotic dynamics observed in the bulk antiferroelectric (AFE) system 
during its first ordered phase. The numerical simulations conducted in this study are divided into three 
parts. In the first two parts, Wolf ’s algorithm is utilized to calculate the Lyapunov exponents of the bulk 
AFE system. The first part involves varying the frequency of the applied field while keeping the amplitude 
constant. The second part focuses on varying the amplitude of the applied field while keeping the frequency 
constant. For each set of the selected amplitude and frequency of the applied field, two sets of numerical 
data are generated to account for different damping conditions. Specifically, one set corresponds  
to a small damping value of g = 0.01, and the other set corresponds to a large damping value of g = 0.3.

In the third part, a few sets of parameters are selected from the first two parts, corresponding  
to positive and negative values of the Lyapunov exponents, which are then used to generate  
the corresponding phase portraits. The method employed in the third part closely resembles  
that of (Lim 2022), where numerical simulations are conducted using the fourth-order Runge-Kutta 
method for a specific material, such as ammonium dihydrogen phosphate (ADP). In contrast  
to the approach in (Lim 2022), where the chaotic dynamics are explored through the generation  
of numerous phase portraits, we utilize the Lyapunov exponent as an indicator to distinguish between 
chaotic (positive) and periodic (negative) regimes. 

Formalism for nonlinear dynamics
The details of the formalism can be found in (Lim 2022). The focus of the studies here is an extension 

of (Lim 2022), where we adopt Lim’s dimensionless AFE oscillatory equations of motion, as shown  
in equations (1):

    (1a)

    (1b)

The symbols τ, e (≡ e0 sin(2πft)), q, r, ψ, t, and g represent the reduced or dimensionless temperature, 
applied Maxwell field, normal displacement, staggered displacement, interaction constant of sublattices, 
time, and damping, respectively. From equations (1), we choose e and g as the control parameters of the 
system for numerical simulations. In this paper, we fix the values of τ to be approximately −3.346457 × 10−3 
and ψ to be approximately 1.2332677 × 10−2 as in (Lim 2022). The selected damping constants are 0.01 
and 0.3. 

Equations (1) are nonautonomous differential equations due to the explicit time dependence. In order 
to perform numerical simulations using Wolf ’s algorithm, these equations are transformed into autono-
mous differential equations (Baker, Gollub 1996; Boyce, DiPrima 2001) by introducing the following 
substitutions:

  (2a)
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This yields six coupled first-order differential equations: 

  (2b)

  (2c)

   (2d)

  (2e)

   (2f )

   (2g)

Numerical simulations

In the numerical simulations, we adopt the AFE’s natural frequency, f0, to be approximately 0.021336524, 
and the coercive field of the system, eC, to be approximately 0.41658, as stated in (Lim 2022).  
The numerical simulations are divided into three parts. The first part is the Lyapunov exponents,  
λq, versus the frequency, f, of the applied field. The second part is the Lyapunov exponents, λq, versus  
the amplitude of the applied field, e0. In the third part, we investigate the relations between the Lyapunov 
exponents and the AFE order parameter responses based on a few selected sets of parameters. The selec-
tions of these parameters are mainly based on the results obtained in the first and second parts.  
To eliminate transient effects, the first 30 cycles are excluded when generating the numerical data.  
The Lyapunov exponents in the first and second parts are obtained from the 31st to the 200th cycles.

Lyapunov exponents versus frequency of the applied field

The first part involves calculating the Lyapunov exponents, λq, of the AFE by varying the frequency 
f, while keeping the amplitude, e0, and damping constant, g, fixed at certain values. Wolf ’s algorithm  
is utilized to compute the four Lyapunov exponents for q, dq/dt, r, and dr/dt, corresponding to x1, x4, x2, 
and x5 in equations (2). Only the largest Lyapunov exponents, λq, corresponding to q or x1 are plotted  
in 2D graphs. In the calculations, for each selected fixed e0 value, two curves are generated: one with  
a small damping constant, g = 0.01, and another with a large damping constant, g = 0.3. The numerical 
curves for λq versus f, with e0 fixed at 0.01eC and 0.9eC, are plotted in Figure 1, while the curves e0 fixed 
at 2.0eC are plotted in Figure 2. Furthermore, the curves with e0 fixed at 249eC are plotted in Figure 3.  
In Figures 1 and 2, the frequency, f, varies from 0.025 f0 to 10.0 f0, while in Figure 3, the frequency, f,  
varies from 0.25 f0 to 100.0 f0. 

.
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Fig. 1. λq versus f for e0 < eC. C1 (e0 = 0.01eC, g = 0.01), C2 (e0 = 0.01eC, g = 0.3); C3 (e0 = 0.9eC, g = 0.01),  
C4 (e0 = 0.9eC, g = 0.3)

Fig. 2. λq versus frequency f for e0 > eC. C5 (e0 = 2.0eC, g = 0.01), C6 (e0 = 2.0eC, g = 0.3)

Fig. 3. λq versus f for e0 = 249eC. C7 (g = 0.01), C8 (g = 0.3)
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The Lyapunov exponents, λq, versus frequency f with the amplitude fixed at e0 = 0.01eC, are repre-
sented by curves C1 for g = 0.01 and C2 for g = 0.3, as shown in Figure 1. The frequency, f, varies  
from 0.025 f0 to 10.0 f0. The curves C1 and C2 remain relatively at around 4.074 and 3.87, respectively,  
as the frequency varies. However, the numerical data for C1 and C2 exhibit slight fluctuations within  
the ranges [4.073846, 4.074086] and [3.870382, 3.870610], respectively. These small fluctuations disap-
pear when C1 and C2 are plotted in the same graph. Generally, C1 is approximately 0.204 higher than C2.

The Lyapunov exponents, λq, versus frequency, f, with the amplitude fixed at e0 = 0.9eC, are repre-
sented by curves C3 for g = 0.01 and C4 for g = 0.3, as shown in Figure 1. In the frequency range f ∈ [0.025f0, 
1.925f0], curve C3 is greater than C4, and both curves have small fluctuations. For frequencies in the range 
f ∈ [1.925f0, 3.55f0], curve C3 demonstrates larger fluctuations within the range [3.6960336,1.2019837]. 
For frequencies greater than 3.55f0, curve C4 exceeds C3, except for the range f ∈ [6.5f0, 7.25f0].

The Lyapunov exponents, λq, versus frequency f with the amplitude fixed at e0 = 2.0eC, are repre-
sented by curves C5 for g = 0.01 and C6 for g = 0.3, as shown in Figure 2. The frequency, f , varies from 
0.025 f0 to 10.0 f0. In general, curve C5 is greater than C6, and both curves exhibit fluctuations throughout 
the entire range of the graph, i. e., f ∈ [0.025f0,10.0f0]. For curve C5, the first data point of λq is negative 
at f = 0.025f0, while the remaining points are positive. Curve C6, on the other hand, exhibits periodic 
windows, with notable ones occurring at f ∈ [0.025f0, 1.125f0], f ∈ [5.875f0, 5.9f0], and f ∈ [8.725f0, 10.0f0]. 

The Lyapunov exponents, λq, versus frequency, f , with amplitude fixed at a large value, i. e., e0 = 249.0eC, 
are represented by curves C7 for g = 0.01 and C8 for g = 0.3, as shown in Figure 3. The frequency, f, varies 
from 0.25 f0 to 100.0 f0. In general, curve C7 is higher than C8 within the range f ∈ [0.25f0, 43.5f0]. Curve 
C8 exhibits prominent fluctuation features in the range f ∈ [43.5f0, 7.375f0]. For frequencies greater than 
7.375f0, curve C8 tends to be higher than C7, and demonstrates a trend of linear increment with respect 
to e0. Curve C7 does not exhibit periodic windows, while curve C8 exhibits periodic windows.

By comparing curves C1 to C8 in Figures 1 to 3, we observe that the Lyapunov exponents, λq,  
for g = 0.01 are generally greater than those for g = 0.3, particularly for small e0 and f values. Most of the 
periodic windows, where λq < 0, are present in the curves associated with the larger damping constant, 
g = 0.3, namely C6 and C8. 

Lyapunov exponents versus amplitude of the applied field

In the second part, we use the same Wolf ’s algorithm as in the first part to compute the Lyapunov 
exponents for the AFE system by varying the amplitude of the applied field, e0, while keeping its fre-
quency, f, fixed at several values. The calculated values of λq are shown in Figures 4 and 5. For each se-
lected fixed f value, two curves are generated: one with a small damping constant, g = 0.01, and another 
one with a large damping constant, g = 0.3. 

Fig. 4. λq versus e0 for f < f0. C9 (f = 0.5f0, g = 0.01), C10 (f = 0.5f0, g = 0.3), C11 (f = 0.04f0, g = 0.01),  
C12 (f = 0.04f0, g = 0.3)
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Physics of Complex Systems, 2023, vol. 4, no. 4 181

S.-Ch. Lim

Fig. 5. λq versus e0 for f > f0. C13 (f = 5.0 f0, g = 0.01), C14 (f = 5.0 f0, g = 0.3)

The Lyapunov exponents, λq, versus amplitude, e0, with the frequency fixed at f = 0.5 f0, are represented 
by curves C9 for g = 0.01 and C10 for g = 0.3 in Figure 4. Additionally, the λq values with the frequency fixed 
at f = 0.04f0 are represented by curves C11 for g = 0.01 and C12 for g = 0.3, as shown in Figure 4.  
The amplitude, e0, varies from 0.025eC to 10.0eC. In Figure 4, all curves exhibit discontinuities near  
the value of eC, approximately 0.41658. At this point, λq decreases discontinuously from higher to lower 
values as e0 transitions through eC from low to high values. The curves associated with smaller damping 
constants are generally higher than those with larger damping. Specifically, curve C9 is greater than C10, 
and C11 is greater than C12. When e0 > eC, all curves exhibit small fluctuations around nearly horizontal 
lines, and C10 and C12 showing negative values. 

The Lyapunov exponents, λq, versus amplitude, e0, with the frequency fixed at f = 5.0f0, are repre-
sented by curves C13 for g = 0.01 and C14 for g = 0.3, as shown in Figure 5. The amplitude, e0, varies from 
0.025eC to 10.0eC. In Figure 5, both C13 and C14 exhibit a discontinuity near the value of eC, approximate-
ly 0.41658. However, the discontinuity in C14 is less severe and exhibits a rounded structure as e0 transi-
tions through eC from low to high values. The curves associated with smaller damping constants are 
generally higher than those with larger damping constants. Specifically, curve C13 is greater than C14. 
When e0 > eC, curve C13 exhibits small fluctuations around nearly horizontal lines. In contrast, curve C14 
exhibits larger fluctuations, including a few periodic windows corresponding to the parts of C14 located 
below the horizontal axis. 

Order parameter responses in bulk AFE

The third part is based on the results obtained from the first two parts. A few sets of values for f and 
e0 are chosen to generate the phase portraits of the AFE system using the fourth-order Runge-Kutta 
method, following the approach outlined in (Lim 2022). The selection of f and e0 values is made with  
the aim of observing the relations between λq and the responses of the AFE to the applied electric field.  
For the purpose of comparison, two sets of numerical data are generated for each selected f and e0 com-
bination: one set corresponds to a small damping value of g = 0.01, and the other set corresponds  
to a large damping value of g = 0.3. 

The calculated data for each set of f, e0, and g values are plotted in four figures. (a) shows the plot  
of the dimensionless applied sinusoidal electric field, e, and the dimensionless normal displacement,  
q, as functions of dimensionless time, t. (b) shows hysteresis features, i. e., the dimensionless normal 
displacement, q, versus the dimensionless applied electric field, e. (c) shows the phase portrait  
of the system, namely, the time derivative of the dimensionless normal displacement, dq/dt, versus the 
dimensionless normal displacement, q. Lastly, (d) exhibits the states of the AFE system in the dimension-
less phase space plotted against dimensionless time, t, in a three-dimensional curve. The duration  
for the numerical results shown in (a) to (d) is four cycles, specifically from the 31st to the 34th cycles. 

For e0 = 1.0 × 10−12 eC = 4.1658 × 10−13 and f = 4.0 × 10−3 f0 ≈ 8.5346 × 10−5, the AFE responses are shown 
in Figure 6(a) to 6(d). The curves corresponding to the damping constant g, equalling 0.01 and 0.3,  
overlap with a difference of approximately 2% between the two sets of numerical data. The maximal 
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Lyapunov exponent for the g = 0.3 case is positive, approximately 3.58144. However, the computation  
of λq for the g = 0.01 case encounters numerical simulation overflow, preventing its generation.  
The responses of the AFE exhibit characteristics close to periodic responses. This can be observed  
in Figure 6(a), where the curves resemble sinusoidal curves and are in phase with e. Furthermore,  
the curves in the four cycles overlap, resulting in a linear line through the origin in Figure 6(b) and  
an elliptical shape in the phase portrait shown in Figure 6(c). For a particular set of e0 and f values,  
the magnitude of the order parameter response is proportional to the area occupied by the correspond-
ing phase portrait, or the volume Vq in (dq/dt, q) in phase space. The area occupied by the ellipse  
in Figure 6(c) is estimated as Vq ≈ 1.025 × 10−29, which is extremely small due to the smallness of the ap-
plied e0 and f values. The smooth curve in Figure 6(d) further elaborates the elliptical phase portrait 
shown in Figure 6(c).

https://www.doi.org/10.33910/2687-153X-2023-4-4-176-194
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Fig. 6. AFE response for f = 4.0 × 10−3f0, e0 = 1.0 × 10−12eC, g = 0.3 and 0.01. (a) e and q versus t,  
where e is represented by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q. 

(d) dq/dt versus q versus t.

For e0 = 0.9eC ≈ 0.374922, f = 2.275 f0 ≈ 0.048541, and g = 0.3, the AFE responses are shown in Figure 
7(a) to 7(d). The maximal Lyapunov exponent is positive and approximately 3.477528. In Figure 7(a),  
the curves of e and q exhibit a slight phase difference. The q curve shows wavy deviation on triangular 
waves. The hysteresis loops and corresponding phase portraits for four cycles of e overlap, as depicted 
in Figures 7(b) and 7(c). Figure 7(c) shows that the AFE responses occupy a small volume in phase space, 
estimated at Vq ≈ 0.0105. The wavy pattern observed in each cycle of the curve in Figure 7(d) further 
elaborates the non-elliptic irregular wavy cloud shape of the phase portrait shown in Figure 7(c). 
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Fig. 7. AFE response for f = 2.275f0, e0 = 0.9eC, g = 0.3. λq = 3.4775278. (a) e and q versus t, where e is represented  
by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q. (d) dq/dt versus q versus t.

For e0 = 0.9eC ≈ 0.374922, f = 2.275f0 ≈ 0.048541, and g = 0.01, the AFE responses are shown in Figure 
8(a) to 8(d). The maximal Lyapunov exponent is positive and approximately 1.185748. In Figure 8(a), 
e and q exhibit a slight phase difference. The pattern of the q curve shows an irregular wavy pattern  
on each cycle, indicating non-periodic behaviour. The hysteresis loops and corresponding phase portraits 
for four cycles of e do not overlap, as shown in Figures 8(b) and 8(c). Figure 8(c) shows that the respons-
es of AFE occupy a volume Vq ≈ 2.44 in phase space, which is about 232 times larger compared  
to the volume in Figure 7(c). The presence of additional irregular loops winding around the attractors 
on both sides in each cycle depicted in Figure 8(d) further elaborates the irregular and non-overlap 
dumbbell shapes of the phase portrait displayed in Figure 8(c).

https://www.doi.org/10.33910/2687-153X-2023-4-4-176-194
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Fig. 8. AFE response for f = 2.275f0, e0 = 0.9eC, g = 0.01, and λq = 1.185748. (a) e and q versus t, where e is represented 
by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q. (d) dq/dt versus q versus t.

For e0 = 0.9eC ≈ 0.374922, f = 7.05 f0 ≈ 0.150422, and g = 0.3, the AFE responses are shown in Figure 
9(a) to 9(d). The maximal Lyapunov exponent is positive and approximately 0.380776. In Figure 9(a), 
e and q are out of phase, with q leading e nearly π/4. The pattern of the q curve exhibits slightly dis-
torted triangular waves. The hysteresis loops and corresponding portraits for four cycles of e overlap,  
as shown in Figures 9(b) and 9(c). Figure 9(c) demonstrates that the responses of the AFE occupy a vol-
ume Vq ≈ 3.22 in phase space. The pattern observed in each cycle of the curve in Figure 9(d) further 
elaborates the dumbbell shape of the phase portrait displayed in Figure 9(c). 
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Fig. 9. AFE response for f = 7.05f0, e0 = 0.9eC, g = 0.3, and λq = 0.3807764. (a) e and q versus t, where e  
is represented by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q.  

(d) dq/dt versus q versus t.
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For e0 = 0.9eC ≈ 0.374922, f = 7.05f0 ≈ 0.150422, and g = 0.01, the AFE responses are shown in Figure 
10(a) to 10(d). The maximal Lyapunov exponent is positive and approximately 0.826725. In Figure 10(a), 
e and q are out of phase. The pattern of the q curve shows an irregular wavy pattern on each cycle, indi-
cating non-periodic behaviour. The hysteresis loops and corresponding phase portraits for four cycles 
of e do not overlap as shown in Figures 10(b) and 10(c). Figure 10(c) shows that the responses of AFE 
occupy a volume Vq ≈ 2.92 in phase space, which is slightly smaller than the one shown in Figure 9(c). 
The irregular wavy curve in Figure 10(d) further elaborates the irregular shape of the phase portrait 
displayed in Figure 10(c).
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Fig. 10. AFE response for f = 7.05f0, e0 = 0.9eC, g = 0.01, and λq = 0.82672474. (a) e and q versus t, where e is represented 
by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q. (d) dq/dt versus q versus t.

For e0 = 2.0eC ≈ 0.83316, f = 0.025 f0 ≈ 5.334131 × 10−4, and g = 0.3, the AFE responses are shown  
in Figures 11(a) to 11(d). The maximal Lyapunov exponent is negative and approximately −0.207926.  
In Figure 11(a), e and q are out of phase. The q wave exhibits branching spikes on the first and third 
quadrant edges of every cycle, indicating periodic behaviour. The hysteresis loops and corresponding 
phase portraits for four cycles of e overlap, as shown in Figures 11(b) and 11(c). Figure 11(c) exhibits 
inward spiral curves towards the attractors located at both sides, corresponding to q ≈ ±0.89.  
The responses of the AFE occupy a volume Vq ≈ 2.71 in phase space. The anti-symmetric dumbbell-shaped 
4-cycle curve spiraling towards the attractors on both sides for each cycle depicted in Figure 11(d) further 
elaborates on the pattern observed in the phase portrait displayed in Figure 11(c).

https://www.doi.org/10.33910/2687-153X-2023-4-4-176-194
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Fig. 11. AFE response for f = 0.025 f0, e0 = 2.0eC, g = 0.3, and λq = −0.20792619. (a) e and q versus t, where e is represented 
by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q. (d) dq/dt versus q versus t.

For e0 = 2.0eC ≈ 0.83316, f = 0.025f0 ≈ 5.334131 × 10−4, and g = 0.01, the AFE responses are shown  
in Figure 12(a) to 12(d). The maximal Lyapunov exponent is negative and approximately −0.00414195. 
In Figure 12(a), e and q are out of phase. The q wave exhibits intense branching oscillations damped 
towards the peaks of the first and third quadrant of every cycle, indicating periodic behaviour. The hys-
teresis loops and corresponding phase portraits for four cycles of e overlap, as shown in Figures 12(b) 
and 12(c). Figure 12(c) illustrates intense inward spiral curves towards the attractors located at both 
sides, corresponding to q ≈ ±0.89, The responses of the AFE occupy a volume Vq  ≈ 4.12 in phase space, 
which is approximately 1.52 times larger than the one shown in Figure 11(c). The anti-symmetric dumb-
bell-shape 4-cycles curve, spiraling towards the attractors on both sides for each cycle in Figure 12(d), 
further elaborates on the pattern observed in the phase portrait displayed in Figure 12(c).
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Fig. 12. AFE response for f = 0.025 f0, e0 = 2.0eC, g = 0.01, and λq = −0.0041419531. (a) e and q versus t, where e  
is represented by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q.  

(d) dq/dt versus q versus t.

For e0 = 249.0eC ≈ 103.7284, f = 25.5 f0 ≈ 0.544081, and g = 0.3, the AFE responses are shown in Figures 
13(a) to 13(d). The maximal Lyapunov exponent is negative, approximately −0.218945. In Figure 13(a), 
e and q are slightly out of phase. The pattern of the q curve exhibits slightly distorted triangular waves 
with two branching peaks and troughs. It is periodic, as indicated by the overlap of the hysteresis loops 
and corresponding phase portraits for four cycles of e shown in Figures 13(b) and 13(c). Figure 13(c) 
shows that the responses of the AFE occupy a volume Vq ≈ 95.54 in phase space. In Figure 13(d), the 
curve exhibits two windings around each attractor in each cycle, further elaborating on the dumbbell-
shaped loops with extra windings on both sides of the phase portrait shown in Figure 13(c).
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Fig. 13. AFE response for f = 25.5f0, e0 = 249eC, g = 0.3, and λq = −0.218945. (a) e and q versus t, where e is represented  
by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q. (d) dq/dt versus q versus t.
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For e0 = 249.0eC ≈ 103.7284, f = 25.5 f0 ≈ 0.544081, and g = 0.01, the AFE responses are shown in Figures 
14(a) to 14(d). The maximal Lyapunov exponent is positive, approximately 3.230842. Figures 14(a) to 
14(d) exhibit similar characteristics to Figures 8(a) to 8(d) and Figures 10(a) to 10(d), with the exception 
that the responses of the AFE occupied a large volume, Vq ≈ 197.24, in phase space, which is approxi-
mately double compared to the one shown in Figure 13(c).
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Fig. 14. AFE response for f = 25.5f0, e0 = 249eC, g = 0.01, and λq = 3.230842. (a) e and q versus t, where e  
is represented by the black curve and q is represented by the red curve. (b) q versus e. (c) dq/dt versus q.  

(d) dq/dt versus q versus t.

Conclusions

The results of the first part indicate that, for small amplitudes (e0) and frequencies (f) of the applied 
field, the Lyapunov exponents (λq) for g = 0.01 are greater than those for g = 0.3. Additionally, most  
of the periodic windows, corresponding to λq < 0, are observed in curves with a large damping constant  
(g = 0.3). 

In the second part, it is observed that as the amplitude of the applied field (e0 ) varies from low values 
and sweeps through eC to high values, the Lyapunov exponents (λq) decrease discontinuously at e0 ≈ eC, 
regardless of the frequency. Furthermore, for applied fields with low frequencies (f ≤ 0.5f0) and amplitudes 
greater than the cohesive field (e0  > eC), in a system with large damping (g = 0.3), the Lyapunov exponents 
(λq) are negative.

The results from the third part demonstrate that the time-varying dimensionless normal displace-
ments (q) are distorted compared to the sinusoidal applied field (e). It is observed that, for the negative 
Lyapunov exponents, the trajectories in phase space spiral towards attractors regardless of damping.  
The magnitude of the system’s responses is proportional to the volume in phase space (Vq) occupied by 
the trajectories. 

In most cases, Vq is smaller for large damping and larger for small damping, as shown in Figures 6(c) 
to 8(c) and 11(c) to 14(c). For cases near eC, the relative responses exhibit large fluctuations with respect 
to frequency. For example, when e0  = 0.9eC  and f = 2.275f0, Vq for large damping (g = 0.3) in Figure 7(c) 
is approximately 232 times smaller than Vq for small damping (g = 0.01) in Figure 8(c). Conversely, when 
e0 = 0.9eC and f = 7.05f0, Vq for large damping in Figure 9(c) is approximately 1.1 times larger than Vq for small 
damping in Figure 10(c). In general, large damping tends to suppress chaos when e0  is not close to eC. 

For cases with large damping and positive λq, the orbits of trajectories exhibit significant overlap 
across consecutive cycles of the driving field, as shown in Figures 6(c), 7(c), and 9(c). When λq is negative, 
the responses are periodic, and the orbits of trajectories spiral towards attractors, particularly for mod-
erate values of amplitude values (e. g., e0 =2.0eC) and low frequencies (e. g., f = 0.025f0). However,  
this effect is less obvious for large value of amplitude values (e. g., e0 =249.0eC) and high frequencies  
(e. g., f = 25.5f0). 

As a summary, the numerical results demonstrate that periodic responses occur when λq < 0, as shown 
in Figures 11 to 13. When e0  and f are very small, irrespective of the damping, λq is positive, leading to 
quasi-periodic responses. For moderate values of e0  and f , when λq > 0, the responses with damping  
g = 0.01 exhibit chaotic behaviour, as shown in Figures 8, 10, and 14, while the responses with damping 
g = 0.3 appear quasi-periodic, as indicated by the overlapping hysteresis loops and phase portraits  
in Figures 7 and 9. Larger damping in the AFE system reduces the chaotic response and the density  
of chaos. Consequently, large damping can regulate response to the driving field, even though the system 
is chaotic.
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Based on the comprehensive numerical results, we conclude that, for the antiferroelectric system  
in its first-order phase, the method of calculating the Lyapunov exponent and plotting phase portraits 
proves to be an efficient approach for identifying the regimes of amplitude and frequency of the applied 
field that lead to periodic and chaotic responses, particularly in the case of small damping. This approach 
offers an alternative to studying chaotic dynamics through multiple phase portraits (Lim 2022).  
The numerical simulations confirm that by manipulating the amplitude, frequency, and damping parameters 
of the AFE system, it is possible to control and regulate the occurrence of chaotic and periodic responses 
in the bulk AFE system. Utilizing the largest Lyapunov exponent as an informative indicator for 
characterizing the system’s nonlinear behaviors proves to be an effective approach.
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