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Abstract. The article describes the photon emission of the low-energy electron of a graphene monolayer  
in a constant electric field that exists during a macroscopic time period. We work in the Fock space 
representation of the Dirac model, which takes exact account of the effects of vacuum instability caused  
by an electric field, and in which the interaction between electrons and photons is taken into account  
in the first-order approximation. We find the main contribution to the total probability of a high-frequency 
photon emission of the electron and analise angular distribution of the emission. 
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Introduction

Low-energy single-electron dynamics in graphene monolayers at the charge neutrality point is de-
scribed by the Dirac model, being a 2+1 dimensional version of massless quantum electrodynamisc 
(QED) with the Fermi velocity 610 m / sFv  playing the role of the speed of light in relativistic particle 
dynamics. This area is currently under intense development, see the reviews (Sarma, Adam, Hwang, 
Rossi 2011; Vafek, Vishwanath 2014). In particular, the effect of particle production from vacuum due 
to a low-frequency electric field is crucial for understanding the conductivity of graphene, especially  
in the so-called nonlinear regime; e.g., see Ref. (Gavrilov, Gitman, Yokomizo 2012) for the review. 
Electron-hole pair production at the charge neutrality point (which is an analog of the electron-positron 
pair production from the vacuum) was recently observed in graphene by its indirect influence on the 
graphene conductivity, see Ref. (Vandecasteele, Barreiro, Lazzeri et al. 2010).

In this article we consider an infinite flat graphene sample on which a uniform electric field is applied, 
directed along the axis x  on the plane of the sample. We assume that the applied field is a constant 
electric field that exists during a macroscopically large time period T (we call it as the T-constant ) com-
pared to the characteristic time scale Δtst = (e|E| vF/ℏ) −1/2 ≫ 0.24 fst specific to graphene, 10−12 s∥ T>Δtst; 
see Ref. (Gavrilov, Gitman, Yokomizo 2012) for details. This field turns on to E  at  -T/2=tin and turns 
off to 0  at. T/2 = tout.

The electromagnetic field is not confined to the graphene surface, z = 0, but rather propagates (with 
the speed of light c) in the ambient 3+1 dimensional space-time, where z is the coordinate of the axis 
normal to the graphene plane. The article focuses on the characteristics of high-frequency emission  

http://www.intphysiology.ru
https://orcid.org/0000-0002-0350-3012
mailto:gavrilovsergeyp@yahoo.com
https://creativecommons.org/licenses/by-nc/4.0/


Physics of Complex Systems, 2020, vol. 1, no. 2 79

I. N. Aslyamova, S. P. Gavrilov

(ω≫ T−1) of an electron graphene in a constant electric field. Note that such an emission could be observ-
able which makes it highly interesting. Taking into account that a low-frequency external electric field 
requires a non-perturbative treatment of massless carriers, we use non-perturbative methods  
of the strong-field QED with unstable vacuum, see Ref. (Fradkin, Gitman, Shvartsman 1991). We work 
in the Fock space representation of the Dirac model, which takes exact account of the effects of vacuum 
instability caused by external electric fields, and in which the interaction between electrons and photons 
is taken into account perturbatively in the first-order approximation, following the general theory  
(the generalized Furry representation), see Ref. (Fradkin, Gitman, Shvartsman 1991).We use the repre-
sentation of the Dirac model in the Fock space adjusted for the interaction of photons with Dirac fermi-
ons, Ref. (Gavrilov, Gitman 2017). Applying this representation we find the main contribution  
to the total probability of a high-frequency photon emission by an electron in graphene and analise 
angular distribution of the emission.

The total probability of a photon emission

In what follows, we use boldface symbols for three-dimensional vectors and symbols with arrows  
for in-plane comonents, for example, ( ),=

r x y . The Dirac equation in an external field that couples 
minimally to the electrons on the graphene plane is

 ( ) ( )ext , ,  ,ψ ψ∂ =
 

 ti t r H t r
 (1)
 

where ( ),ψ t r  is a two-component spinorial field, 1 2
,γ γ γ⋅ = +

 

x yp p p , the γ-matrices satisfy the  
standard anti-comutation relations, {γμ,γν} = 2ημν, ημν = diag (+1−1,−1), μ,ν = 0,1,2, and e is the charge  
of the electron, e = −|e|. The algebra of γ -matrices has two inequivalent representations in 2+1-dimen-
sions, and a distinct (pseudo spin) representation is associated with each Dirac point, 

 0 3 1 2 2 1 ,    ,    ,γ σ γ σ γ ζσ= = = −i i  (2)

where the σj are Pauli matrices, and ζ = ±1 labels inequivalent representations.
In the usual dipole approximation, z-dependence of the QED Hamiltonian can be integrated out. 

Then the Hamiltonian of the electron-photon interaction is

  � � � �int
0

,ˆ ‍ , ,ˆ
�

� � � �
��� � �

H in
z

j t r A t drr
 

 (3)
 

 � � � � � �† 0, Ψ , , Ψ ,   ,ˆ
2

ˆ� �
�

� �� � �
� �� � �F
in

evj t r t r t r
c  

where quantum fields ( )Ø̂ , t r  and ( )†Ø̂ , t r  obey both the Dirac equation with the potential ( )ext ,


A t r  
and the standard equal time anticommutation relations. We decomposed quantum electromagnetic field 
in the interaction representation into terms of the annihilation and creation operators of photons, ϑCk  
and †

ϑCk : 

 ( ) ( ) ( )†
,

,ˆ 2,  e  e  ω ω
ϑ ϑ ϑϑ

π
ε ω

⋅ − − ⋅ − = + ∑  i t i tt c C C
V

k r k r
k k kk

A r å  (4)

where ϑ = 1,2 is a polarization index, the εkϑ  are unit polarization vectors transversal to each other  
and to the wavevector k, ω = ck, k = |k|, V is the volume of the box regularization, and ε is the relative 
permittivity (ε = 1 for graphene suspended in vacuum).

The in - and out - operators of creation and annihilation of electrons ( †
na , na ) and holes ( †

nb , nb )  
are defined by the two representations of the quantum Dirac field  � �Ψ̂ , �t r  as 

 
 � � � � � � � � � �†Ψ , inˆ   , in   ,� �� �� �� �� ��� � �

n n n nn
t r a t r b t r

  

 (5)
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n n n nn
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where ( ) ,ζψ


n t r  and ( ) ,ζψ 

n t r  are in - and out -solutions of the Dirac equation with the potential 
( )ext ,



A t r  for given quantum numbers n and well-defined sign of the frequency ζ either before the turn-
on or after the turn-off of the field, respectively. They are related by a linear transformation, i.e. a linear 
canonical transformation (the Bogoliubov transformation) between in - and out - operators; see (Fradkin, 
Gitman, Shvartsman 1991) for details.

The initial and final states with definite numbers of charged particles and photons can be generally 
written in the following way:

 ( ) ( )† † †in in in | 0, in ,= … … … 〉C b a  

 ( ) ( )† † †out out out | 0,out .= … … … 〉C b a  

 The  -matrix or the scattering operator in the first-order approximation with respect of electron-
photon interaction (it is exact with respect of an interaction with an external field) is 

 
 � � � �1 1

int
11 Υ ,     Υ ‍ ˆ�

��
� � � � ��S Hi dt . (6)

In general, the emission of a single photon by an electron is accompanied by the creation of a number 
of electron-hole pairs from the vacuum by the quasiconstant electric field. We are interested in the 
probability of transition from the single-electron state characterized by the quantum numbers l with  
the emission of one photon with given k, ϑ and the production of arbitrary number of pairs from  
the vacuum, that is, the total probability of the emission of the given photon from the single-electron 
state, ϑ

+ 
 
 

 lk . This probability can be presented as the average number of photon emitted

 ( ) ( )† † †0, in in in | 0, in .ϑ ϑϑ
+  = 〉 

 
  n ll a C C ak kk  (7)

It is convenient to represent Eq. (7) as

 
( )

2
1 ; ,ϑ ϑ

+ + +   =   
   

∑ inn
l w n lk k

  (8)
 

 � � � � � � � �1 1 †; 0, in in Υ in | 0, in .��
� �� � � �� �

� �in n lw n l a C i akk  

Note that to calculate the amplitude ( )1 ; ϑ
+ + 

 
 inw n lk  we need only initial electron states.

The case of a constant electric field

Let us calculate the total probability for emission, given by Eq. (8), in a near constant electric field 
that is realised as the T -constant electric field (Gavrilov, Gitman 2017). We consider the case of the field 
described by a vector potential with only one nonzero component ( )1

extA t  ( ( ) 0,   1µ µ= ≠extA t ), 

 ( )
( )
[ ]
( )

1 1

1 1 1

2 2 2

I , ,   / 2 ,
, Int ,  ,
, II ,  ,   / 2 

∞

∞

∈ = − = −
= ∈ =
 ∈ = =

in
ext

t t t t T
A t cE t t t t

t t t t T
such that the electric field E(t) also has only one nonzero component, which is nonzero for t ∈  Int, 

i.e., 

 ( ) ( )1 1,   Int;     0 ,   I II.= ∈ = ∈ ∪E t E t E t t

To simplify notation, it is convenient to let E < 0, so that eE > 0. We are only interested in the case  
of a slowly varying homogeneous electric field E which remains constant for a macroscopically large 
time period T, 

  (9)/ Δ 1 .�stT t
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The time scale Δtst plays the role of the stabilization time in the sense that the differential mean num-
bers of created pairs have the form 

 
2

 ,     ,πλ λ− =



F y
n

v p
N e

eE
 (10)

which is the same for the case of the constant electric field in a finite momentum range.
The solutions of the Dirac equation (1) in the T -constant field are studied in details in Ref. (Gavrilov, 

Gitman 2017). It was demonstrated that the in-set ( ){ } ,ζψ


n t r  of these solutions can be taken  
in the form 

 ( ) ( ) ( ), 1 ,    , ,ψ φ± ±= ∂ +


 





ext
p t pt r i H t r  

 
( ) ( )/

, 1 , 1 1    , e   ,φ ϕ⋅
± ±=



 









 ip r
p pt r t U  (11)

where Us are the constant orthonormalized spinors

 
 1 1

1 11 1 ,          .
1 12 2+ −

   
= =   −   

U U
 

In a finite momentum range, the functions ( ), ϕ± p s t  take the form of the following Weber parabolic 
cylinder (WPC) functions (Bateman 1953):

 ( ) ( ) ( ) ( ), 1 , 1
2 2

 1  ,     1  ,
ν ν

ϕ ξ ϕ ξ+ − − +
− − −

= − − = − +       p s s p s st CD i t CD i
 

 (12)
 ( )  ,      ,

2
λξ ν= + =



F
x

v ieEt p
eE  

with the normalization constant 

 ( ) ( )1/22 exp / 8 ,πλ−= − FC eE v S  (13)

where S is the graphene area. An in-state ( ) ,ψ± 



p t r  describes a particle/hole with a well-defined 
energy in the distant past. In such a description, the probability of an emission of a given photon  
in the T -constant electric field for t ∈  Int is indistinguishable from the effect produced by a constant 
field (T →  ∞). Then, in what follows, we assume that T →  ∞.

It is useful to define an orthonormal triple

 ( )/ sin cos ,  sin sin ,  cos  ,θ φ θ φ θ=kk   (14)
 1 2 1 1/ ,     /= × × = × ×z zk k k ke k e k k kå å å å , 

where 

 ( )1 sin ,  cos ,  0  ,φ φ= −kå

 ( )2 cos cos ,  cos sin ,  sin  θ φ θ φ θ= − −kå



Characteristics of high-frequency emission...

82 DOI: 10.33910/2687-153X-2020-1-2-78-84

for k in the upper spatial region, kz ≥ 0. Using the parametrization, dk = c-3 ω2 dωdΩ, we find that the 
probabilty of the emission per unit frequency and solid angle dΩ is

 
( )

'
'

2 2 2

2
Ä   ,

Ù 2

ϑ
ωα

ω ε π

+

+

= −

 
     =  

 
 



 






stF

p p
p p k

d p tv M
d d c

k

 '

'
2 exp

2
ω+  +

= − 
 

′
 

x x
Fp p

F

p pM v SC C i
eE v eE

 (15)
 ' 1,1 0,0

11 002ϑ ϑχ χ


× +




y y
F

eEp p Y Y
v

 ( ) ( )' 1,0 0,1
10 011 1 ,ϑ ϑζ χ χ

 + − + +  



y y
F

eE i p Y i p Y
v

where α = e2 / cÿ is the fine structure constant, '  
→

′ =
y yp p

C C , and

 
( ) ( )1 /2, 1 /2 † 0 ,ϑ ϑχ γ γ ε′+ +

′= ⋅
 s s

s sU Uk 
0,0 1,1 1,0 0,1
1 1 1 1sin ,   cos ;χ χ φ χ χ ζ φ= − = = − = i (16)

 0,0 1,1 1,0 0,1
2 2 2 2cos cos ,   cos sin .χ χ θ φ χ χ ζ θ φ= − = = − = −i

In the case of a high frequency of interest, ( )ρ′j jY  can be approximated as the following Fourier 
transformation of the product of the WPC functions 

 
� � � � � �1 1 e ,� � �

�

� � ��
� � � �� � � �� � � ��� i u

j j j jY D i u D i u du
� �

� ��
�

 (17)
 '     ,    ,     ,     Δ .

2 2
� �� � � � � �

�

�
� �� � � �

y y
stp p

i i t

 
The integrals of the type (17) have been studied in Ref. (Nikishov 1970). Similarly, one can find that 

  
� � 2 sinh Γ

2 2
�� ��

��
� � � �� �� � � �
� � � �

j jY i j

 ( ) ( )exp 2 1 ,
4 2
πλ π ρ′

 × −
′
+ + −  

′ j ji j j I
 (18)
 

( ) ( ) 1 ,   ,ν ν
ν ν

ρ ρ → + −
→ +′ ′ ′ ′

= jj j j
I I

 

where

 ( ) ( ) ( ) ( )
2

exp ln / 2
4 4 4
π ρ πρ π ν ν ν ν ρ′ 

 
= − + + − ′+ −

 
I i i i

 (19)
  � �2Ψ ,1 ; / 2� � � ��� � � �i  

is expressed via the confluent hypergeometric function Ψ and the gamma function Γ.
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Characteristics of high-frequency emission

Assuming typical values of an electric field we obtain the following frequency scale

 6 4
0 0,     1 10 V / m,     7 10 8,−= = × ×  E aE E a

 (20)
  1 14 1Δ 0.38 10 s .� � �� � � �sc stt a

At high frequencies, ρ ≫  1, we can use the asymptotic behavior of the function Ψ, given by 
Eq. (6.13.1.(1)) in (Bateman 1953),

 
 
� � � � � �2 2 22Ψ , ; / 2 / 2 1 .

�

� � ��� � �� � �� �
i a a

a c i e O  (21)

The term '

2
+
 p pM , given in Eq. (15), is Gaussian function of  λ’. It is exponentially small for λ’ > 1  and 

whatever λ, 

 '

2
~ sinh exp .

2 2
πλ πλ πλ′+ −    −   

   
 p pM e  (22)

Then, in what follows, of interest is the case of small  λ’ > 1  only. It implies an approximate conserva-
tion law, 

 ( )1 ~ sign .ω λ−
F y sc yv k p  (23)

 Under this condition it can be shown that the leading contribution to the probability (15) is from 
terms with Y00 and Y01,

 ( )
( )

00

1
/2Ã ,

2 2

ν ν
πλ ρρ

′− + +
−   ≈       

iY f i e

 ( )
( )

01
/4Ã 1 ,

2 2

ν ν
πλ ρρ

− +′
  ≈ −      

iY f i e (24)

 2 32sinh exp .
2 4 8 8
πλ ρ πλ πλ  = − −  

′
   

f i

Thus, we obtain that

 ( )
2

'
2 sinh exp / 2

2
π πλ π λ λ
λ

+  ≈ − +     
′

 



F
p pM

v eE

 (25)
 ( ) ( )0,0 0,1

2

sign2 sign .
1

2

ϑ ϑ

λ
χ ζ χ λρ

× −
−

y
y

p
p

i

Unlike the example considered in Ref. (Gavrilov, Gitman 2017) under condition |λ - λ› | < 1 the ex-
pression given by Eq. (25) is valid at whatever λ› and λ.

At small 2 /λ ρ<  the term with 0,0
ϑχ  in Eq. (25) is leading. In this case 

2
2

' ~ ρ−+
 p pM  is rather 

small. 
The main contribution to Eq. (25) is due to the term with 0,1

ϑχ  when 1/ρ λ , 

 
( )

( )2

2
0,1

'
22 sinh exp / 2 .

2/ 2 1 ϑ
π πλ π λ λ χ

λ
+  ≈ − +     +

′
 



F
p pM

v eE
 (26)

We see that the probability of the emission (15) where the factor 
2

'
+
 p pM  is given by Eq. (26) has 

a maximum at λ ~ 1. 
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