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Abstract. In this paper we analyse chaotic states in a system of coupled Duffing oscillators. The concept 
of quasienergy of a system is introduced in a way similar to the concept of quasienergy of a quantum 
mechanical system driven by an external periodic field. We show that in the absence of a connection between 
the oscillators in the system under consideration, chaotic states with the same value of quasienergy, but 
different values of the angular momentum are realized when the external influence changes. This fact can 
be interpreted as the existence of degenerate chaotic states of the system. A numerical experiment shows 
that taking into account the interaction between oscillators leads to the splitting of quasienergy, similar 
to the splitting of the quasienergy level in a quantum mechanical system.

Keywords: nonlinear dynamics, chaotic states, chaotic attractor, probability density, quasienergy, degenerate 
states, numerical experiment

Introduction

Chaotic states in dissipative systems described by equations of nonlinear dynamics have a number 
of features specific to systems whose states are determined by linear equations. This is explained by the 
fact that over time, the chaotic states of dissipative systems tend towards a certain set in the phase space 
called a  ‘strange attractor’ or ‘chaotic attractor’ (Loskutov 2007). The state described by the chaotic  
attractor can be characterized by the probability density, which determines the probability of finding 
a system in a given region of phase space (Sagdeev et al. 1988). The average values of various quantities 
characterizing these systems can be calculated using probability density, just as it is done for other sys-
tems described by probability density: for example, for systems with a large number of particles or quan-
tum mechanical systems.

The equation for the probability density of a system characterized by a chaotic attractor is a linear 
equation, similar, for example, to the Schrodinger equation for a wave function, the modulus square 
of which also determines the probability density (Liaptsev 2019). The linearity of the equation for proba-
bility density implies a number of properties characteristic of systems described by linear equations. 
In particular, the response of the system to small perturbations is small and proportional to the small 
parameter characterizing the perturbation (Liaptsev 2020). This makes it possible to apply perturbation 
theory in the same way as it is applied to systems described by the equations of quantum mechanics. 
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It should be noted, however, that when considering a quantum mechanical system in an external field, 
it is necessary to consider a more general equation for the density matrix instead of the Schrodinger 
equation (Blum 2012). With sufficiently strong external fields, the system of equations becomes nonlinear. 
For external fields of optical frequency, such effects are widely studied in a variety of works on nonlinear 
optics (Allen, Eberly 1987; Andreev et al. 1993; Bayramdurdiyev et al. 2020; 2021; Benedict et al. 1996; 
Ryzhov et al. 2016; 2017; Ryzhov et al. 2019; 2021a; 2021b).

Other features of the chaotic states of dissipative systems described by the equations of nonlinear 
dynamics are properties reflecting the symmetry of such systems. These properties are manifested, for 
example, in the polarization of radiation from such systems (Liaptsev 2014; 2015). The polarization 
properties, characterized in particular by the Stokes parameters, are similar to the polarization proper-
ties of symmetric quantum mechanical systems in degenerate states. This allows us to make the assump-
tion that the chaotic states of dissipative systems can also be degenerate in a certain sense.

For systems whose description is based on the laws of quantum mechanics, degeneracy is defined 
as the existence of several states having the same energy. It should be noted, however, that systems whose 
state tends towards a chaotic attractor are open systems, so that the energy of such systems, if any can 
be determined, is not conserved over time. However, in most cases, chaotic states in such systems arise 
when the system is subjected to external periodic influence. These systems include, in particular, such 
model systems as a nonlinear oscillator and a mathematical pendulum located in an external periodic 
field (Duffing 1918; Grinchenko et al. 2007; Hacken 1978; Kuznetsov et al. 2002; Moon 1987; Sagdeev 
et al. 1998). These physical systems have one degree of freedom, and the corresponding equations of non-
linear dynamics in an external periodic field are reduced to a system of 3 differential equations of the  
1st order. Therefore, such systems are sometimes called systems with 1.5 degrees of freedom. In the 
problems considered by quantum theory, when describing systems that are driven by an external perio-
dic field, the concepts of quasienergy and, accordingly, quasienergetic states are used (Bordo et al. 1984; 
Delone, Krainov 1999; Kiselev, Liapzev 1990; Lyaptsev 1994; Zel’dovich 1973). The time-dependent 
Schrodinger equation for such systems has the following form:

0( ( ))i H V t
t

∂Ψ
= + Ψ

∂
  , (1)

where H0 is a Hamiltonian in the absence of an external field, and V(t) is a periodic function of time. 
According to Bloch’s theorem, the solution of this equation can be represented as a superposition of so-
lutions of the form: 

( ) exp ( )iEtt tψ
  Ψ = −  
   ,  (2)

where ψ(t) is a wave function that periodically depends on time with the period of the external field. 
By definition, the E value is called quasienergy, and ψ(t) is the wave function of a quasienergetic state 
(QES) (Zel’dovich 1973). As in the case of stationary states, QES can be degenerate, that is, several dif-
ferent wave functions can correspond to one value of quasienergy.

When considering dissipative systems described by equations of nonlinear dynamics, the density 
matrix corresponding to the chaotic attractor also turns out to be periodically time-dependent. This 
means that for such systems it is also possible to define the concept of quasienergy, using, for example, 
the limiting transition from quantum mechanics to classical theory. Below, we will apply a similar ap-
proach to describe a model system of coupled Duffing oscillators and show that degenerate chaotic states 
can occur in this case. As it will be shown, the degeneracy in this case is due to the symmetry of the 
problem, and with a decrease in symmetry, an effect similar to splitting energy levels with a decrease 
in symmetry in a quantum mechanical problem may occur.

Quasienergies of chaotic states of systems driven by an external periodic field

Let us consider, for simplicity’s sake, the case of one-dimensional motion of a single particle in a field 
with potential energy U(x,t), which depends on the coordinates of the particle x and also periodically 
depends on time. The Hamiltonian included in the Schrodinger equation (1) can be written as:
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.

Substitution of a solution of the form (2) into the Schrodinger equation leads to the equation for the 
QES:

2

( ) 0
2

E U i
m
ψ ψ ψ′′ + − + =






 
.

Here and further, the strokes indicate the derivatives of x, and the dot above the symbol is the derivative 
of t. The limiting transition to the classical description is carried out by defining the function σ(x,t) 
(Landau, Lifshitz 1977):

exp isψ
  =   
   

.

The equation for the function s(x,t) has the following form:

( )21
2 2

i E U
m m

s s s′ ′′− + = −


  .

The transition to the classical description is carried out by the representation of the function σ(x,t) in the 
form of a power expansion of the Planck constant:

2

0 1 2 ...
i i

s s s s
  = + + +  
 

   .

In zero approximation, we obtain the equation:

( )2

0 0
1

2
E U

m
s s′ + = −

 .

This equation coincides with the Hamilton–Jacobi equation for the action function:

( )21 0
2

S U S
m

′ + + =  ,

if you put:

0S Ets= −  . (3)

According to the periodicity of the function ψ(x,t), the function 0 ( , )x ts  must also be periodic. This 
is fulfilled within the classical limit if the classical solution x(t) is a periodic function. Indeed, the La-
grangian:

2

( , ) ( , )
2
xL x t U x t
m

= −


is in this case a periodic function of time. The action is determined by an integral, which, in accordance 
with expression (3), can be represented as:

0

1 1 0( ) ( )
t

t
S L t dt Et ts= = − +∫  .

It can be seen from this expression that in the case of a periodic solution x(t), quasienergy can be defined 
by the following expression:

2 2

2 ( , )
2

H U x t
m x

∂
= − +

∂

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, (4)

0

0

1 1
1 ( ) ( )

t T

t

E L t dt L t
T

+

= − = −∫

where T is the period of the function U(x,t), and the symbol ...  indicates the average value of the La-
grangian over the period.

Note that the explicit calculation of quasienergy can be carried out analytically, for example, in the 
case of a harmonic oscillator with attenuation driven by an external periodic field. The corresponding 
equation for the oscillator can be written as:

2
0 cos( )x x x f tγ ω ω+ + =  .

The calculation of quasienergy using formula (4) in this case leads to the expression:

( )
2

2 2
04
fE

ω ω
=

−  
.

This expression corresponds to the quasienergy for an atom in a strong electromagnetic field. The cor-
responding corrections due to the periodic field are called the dynamic Stark effect (Delone, Krainov 
1999).

This expression obtained for a periodic solution can be generalized to chaotic solutions of one-di-
mensional dissipative systems in a periodic field (a Duffing oscillator, a pendulum in a periodic field). 
The dynamic system of equations for such systems has the form (Grinchenko et al. 2007):

,
( ) ( ) cos( ),
.

x v
v F x v f xγ j
j ω

=
= − +
=







 (5)

In these equations, F(x) is the force acting on the oscillator, γ is the dissipation coefficient, f(x) is the 
amplitude of the external field, depending on x, ω is the frequency of the external field, the variables 
x and v correspond to the coordinate and velocity, and the variable j is cyclic with a period of 2π. The 
chaotic state corresponding to the strange attractor can be described using the probability density ρ(x,v,j), 
which satisfies the partial differential equation (see, for example, (Liaptsev 2020)):

( cos( )) 0v F v f
x v

ρ ρ ρω γ j
j

∂ ∂ ∂
+ + − + =

∂ ∂ ∂
. (6)

It is convenient to represent the three-dimensional phase space of the system under consideration in the 
form of a torus with the closure of the variable j. The probability density determined by equation (6) 
must be normalized by one. Averaging over the time variable in expression (4) in the presence of a chao-
tic attractor should be replaced by averaging over the entire phase space:

( , , ) ( , , )E L L x v x v dxdvdj ρ j j= − = −∫ .   (7)

Note that when performing calculations, it is not necessary to calculate the density matrix. An equiva-
lent result can be obtained by calculating the average value of L for each of the time periods, followed 
by averaging over a large number of periods.

Finally, the expression for quasienergy (7) can be easily generalized to the case of more complex sys-
tems, for example, coupled oscillators (Liaptsev 2023). In this case, the averaging is simply carried out 
over the whole phase space, which has dimension 2n+1/2, where n is the number of degrees of freedom 
of the system in question.

A model of coupled Duffing oscillators

In systems described by quantum theory, the degeneracy of states with a given energy (also with 
a given quasienergy) can be due to the symmetry of the system. In this case, the symmetry group must 
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contain non-commuting transformations (Landau, Lifshitz 1977; Petrashen, Trifonov 2009). One of the 
simplest of such groups is the symmetry group C3v. The simplest model having such symmetry, the solu-
tions of which can be chaotic, is the model of coupled Duffing oscillators. We will consider three sym-
metrically arranged oscillators with a nonlinear dependence of force on displacement, connected in pairs 
by an elastic force. The periodic forces acting on each of the oscillators have the same frequency ω, but 
may differ in phase. The scheme of such a model is shown in Fig. 1.

Fig. 1. A model of three coupled Duffing oscillators

The system of dynamic equations for such a model has the form:

1 1

2 2

3 3

1 1 1 1 2 3 1

2 2 2 2 1 3 2

3 3 3 3 2 1 3

,
,
,
( ) (2 ) cos( ),
( ) (2 ) cos( ),
( ) (2 ) cos( ),

.

x v
x v
x v
v F x v k x x x f
v F x v k x x x f
v F x v k x x x f

γ j j
γ j j
γ j j

j ω

=
=
=
= − − − − + +
= − − − − + +
= − − − − + +
=















 

(8)

The coefficient k in the equations characterizes the magnitude of the interaction between the oscillators. 
In the special case, at k = 0, there is a system of oscillators not connected by elastic forces.

Harmonic approximation

The system of equations (8) can be solved in the special case when the force F(x) linearly depends 
on the displacement: 2

0( )F x xω= − . The general solution corresponds to a superposition of forced 
harmonic oscillations. The normal modes of free undamped oscillations (solution of the system of equa-
tions (8) at f = γ = 0) can be classified by irreducible representations of the symmetry group C3v. The 
displacements corresponding to these fluctuations are shown in Fig. 2.

(a)        (b)             (c)

Fig. 2. Displacements corresponding to normal modes of oscillation
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The displacements in Fig. 2a correspond to a full-symmetric oscillation (representation A1), and the 
displacements in Figs. 2b–2c are oscillations with one natural frequency (representation E). In this case, 
the vibrations of us and ua are symmetrical and asymmetrical with respect to the reflection in the plane, 
which is projected onto a vertical line in the figure. Normal coordinates can be expressed in terms of dis-
placements x1, x2 and x3:

( )

( )

( )

0 1 2 3

2 3

1 2 3

1 ,
3

1 ,
2

1 2 .
6

s

a

u x x x

u x x

u x x x

= + +

= −

= − −

Note that for k = 0, the considered model consists of three unconnected oscillators. As it is easy to show, 
in this case all three frequencies of free normal oscillations coincide.

In the new variables, the system of equations (8) is reduced to the form:

(9)

( ) ( )( )

( ) ( )( )

( )

0 0

2
0 0 0 0

1 2 3 1 2 3

2
0

2 3 2 3

2
0

1 2 3 1 2

,
,
,

cos cos cos cos sin sin sin sin ,
3

3

cos cos cos sin sin sin ,
2

3

cos 2cos cos cos sin 2sin sin
6

s s

a a

s s s s

a a a a

u w
u w
u w
w u w

f

w u w ku
f

v u w ku
f

ω γ

j j j j j j j j

ω γ

j j j j j j

ω γ

j j j j j j j

=
=
=

= − − +

+ + + − + +

= − − − +

+ − − −

= − − − +

+ − − − −













( )( )3sin ,

.

j

j ω

−

=
  
As can be seen from the resulting system of equations, the amplitude of steady-state oscillations of dif-
ferent symmetry depends on the phase j1, j2 and j3. In particular, at j1 = j2 = j3, only full-symmetric 
oscillations are excited. On the contrary, with ratios 2 3 1 2 / 3j j j π= − = ± , only oscillations with coor-
dinates us and ua are excited.

The normal oscillations of us and ua can be considered as oscillations of a two-dimensional harmo nic 
oscillator. In quantum theory, the excited state of such an oscillator is completely determined by two 
constants: the energy of the state E and the angular momentum M (Messiah 1999). In general, several 
states with different values of M can correspond to one energy level. Free oscillations with coordinates 
us and ua have the same natural frequency; however, the phases of these oscillations may not coincide, 
which is analogous to the degeneracy of a quantum two-dimensional oscillator. In this case, an addi-
tional parameter that determines the state of the excited system of oscillators is the angular momentum, 
which in this case can be determined as follows:

s a a sM u w u w= − .

Since the choice of coordinates us and ua depends on the choice of the plane of symmetry, it is convenient 
to convert the angular momentum to the original coordinates and velocities, resulting in the expression:

( )3 2 1 1 3 2 2 1 3
1 ( ) ( ) ( )
6

M v v x v v x v v x= − + − + − .    (10)
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The magnitude of the angular momentum depends both on the parameters that determine the free oscil-
lations of the system ( 0 , ,kω γ ) and on the parameters of external forces ( 1 2 3, , , ,f ω j j j ). When studying 
the dependence of the angular momentum on the phases of external forces, one of the values can be set 
to zero without loss of generality, for example, j1 = 0. Then, away from resonance, when 2 2

0 3kω ω γω− + >>  
the dependence on the phases and amplitude of external forces takes a simple form:

( )2
2 3 2 3sin sin sin( )M Cf j j j j= − − − ,  (11)

where the constant C depends on the parameters 0 , ,ω ω γ .

A system of Duffing oscillators in the absence of coupling

Numerical solutions of equations (8) were obtained for a specific type of oscillator forces depending 
on the displacements:

3( )F x x x= − . (12)

Numerical calculation shows that the system of equations (8), as for a single Duffing oscillator, can have 
chaotic solutions in a certain range of the parameter k. These solutions can be described in terms of pro-
bability using the probability density 1 2 3 1 2 3( , , , , , , )x x x v v vρ j , which is determined by an equation similar 
to equation (6):

 .

( )

( )

( )

2
1 1 1 1 2 3 1 1

1 1

2
2 2 2 2 1 3 2 2

2 2

2
3 3 3 3 2 1 3 3

3 3

( 2 cos( ))

( 2 cos( ))

( 2 cos( )) 0

v x x k x x x v f
x v

v x x k x x x v f
x v

v x x k x x x v f
x v

ρ ρ ρω γ j j
j
ρ ργ j j

ρ ργ j j

∂ ∂ ∂
+ + − − − − − + + +

∂ ∂ ∂
∂ ∂

+ + − − − − − + + +
∂ ∂
∂ ∂

+ + − − − − − + + =
∂ ∂

Let us first consider the case when the oscillators are not connected by elastic forces (k = 0). In this 
case, probability density can be expressed in terms of probability densities for each of the oscillators:

1 2 3 1 2 3 0 1 1 1 0 2 2 2 0 3 3 3
1( , , , , , , ) ( , , ) ( , , ) ( , , )

2
x x x v v v x v x v x vρ j ρ j j ρ j j ρ j j

π
= + + + , (13)

where 0 ( , , )x vρ j  is the solution of equation (6) for the function F(x) defined by expression (12). 
When calculating the average values using the expression (12), it should be taken into account that 

probability densities are normalized by one for any value j:

( , , ) 1dxdv x vρ j =∫ .

As a result of these conditions, the average value of a function that depends only on the variables of one 
oscillator ( , )i iA x v  does not depend on the parameters 1 2 3, ,j j j . It follows that the quasienergy defined 
by expression (7) for oscillators not coupled by elastic forces does not depend on phases 1 2 3, ,j j j  either.

On the contrary, the average values of the quantities, which are products of variables related to dif-
ferent oscillators, turn out to depend on the parameters 1 2 3, ,j j j . In particular, for the average value of 
the angular momentum, we obtain:

1 2 3 1 3 2

2 1 3 3 2 1

1( , , ) ( ( )( ( ) ( ))
6 2

( )( ( ) ( )) ( )( ( ) ( )))

dM x v v

x v v x v v

jj j j j j j j j j
π

j j j j j j j j j j j j

= + + − + +

+ + + − + + + + − +

∫
. (14)

Here, the average values of coordinates and velocities are calculated using the probability density 
0 ( , , )x vρ j :
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0 0( ) ( , , ) , ( ) ( , , )i i i ix dxdv x v x v dxdv x v vj j ρ j j j j ρ j j+ = + + = +∫ ∫ .

Thus, two different methods can be used to calculate the average value of the angular momentum in this 
case. In the first method, calculations are performed directly by solving the system of equations (8) over 
a sufficiently large time interval, followed by time averaging. In the second method, by solving a system 
of equations for one oscillator over a sufficiently large time interval, the probability density 0 ( , , )x vρ j  
is determined and then the formula (14) is used.

In a numerical experiment, the dependence of the average value of the angular momentum was studied 
at 1 2 3

2 20, ,
3 3

s sπ πj j j= = = − , at [ ]1,1s ∈ − . The corresponding dependence graphs ( )M s , where 

sign( )s ss = , are shown in Fig. 3.

Fig. 3. The average values of the angular momentum when changing the parameters 1 2 3, ,j j j

Dots on the graphs indicate the values obtained by the first method (averaging over time when solving 
equations for three oscillators), and circles indicate the values obtained by the second method (averaging 
with the density matrix of one oscillator according to formula (14)). To compare with the results of the 
dependence for the case of harmonic oscillators, formula (11) was used, where the constant C was deter-
mined by the least squares method. The corresponding curve is represented by a solid line. It should be 
noted that the values of the constants C for different values of the parameters f turn out to be close. 

The results show that the numerical calculations made by various methods coincide quite well, and 
the dependence on phases 1 2 3, ,j j j  and amplitude f is similar to the dependence obtained by analytical 
methods for the case of a harmonic oscillator.

In this case, states with a different set of phases correspond to the same value of quasienergy; we can 
therefore point out degenerate states, similar to what takes place in systems described by quantum 
theory. However, comparing the results with the quantum mechanical description, we should note that 
chaotic states are equivalent to mixed states described using the density matrix in quantum theory. Un-
like quantum theory, where the density matrix can be constructed as a bilinear function of stationary 
states (see, for example, (Landau, Lifshitz 1977)), in the case of chaotic states of nonlinear classical dy-
namics, the principle of superposition of states is inapplicable. Therefore, it is impossible to represent 
the probability density as a superposition of functions that transform according to some irreducible 
representation of the symmetry group. Nevertheless, it can be argued that at a value 0s = , the density 
matrix 1 2 3 1 2 3 0 1 1 0 2 2 0 3 3

1 2 2( , , , , , , ) ( , , ) ( , , ) ( , , )
2 3 3

s sx x x v v v x v x v x vπ πρ j ρ j ρ j ρ j
π

= + −  corresponds to a fully 
symmetric state in which the average value of the angular momentum is zero.

As the modulus of the value s increases, the modulus of the value of the average angular momentum 
increases, which means that a component appears in the mixture of states that transforms according 
to the representation E of the symmetry group C3v. In the harmonic approximation, as follows from 
equations (8), a full-symmetric oscillation with zero angular momentum is not excited at the phase ratio 
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2 3 1 2 / 3j j j π= − = ± . In a chaotic regime, it can only be argued that the proportion of a full-symmetric 
oscillation in the probability density takes on a minimum value at the phase ratio 2 3 1 2 / 3j j j π= − = ± . 

Splitting of the average values of quasienergy at k ≠ 0

As follows from equations (8), the three natural oscillation frequencies of the system for a harmonic 
oscillator coincide. When the value k ≠ 0, the frequency of the full-symmetric oscillation becomes dif-
ferent from the frequency of the symmetry oscillation E, thus having a degeneracy equal to two. The 
difference in frequency values increases with the growth of the parameter k. In quantum theory, the 
corresponding phenomenon is called splitting of the energy level (or quasienergy level under external 
periodic influence). In this case, with a chaotic oscillation, there can be no discreteness of quasienergy 
values, of course. However, it is possible to investigate the change in the average value of quasienergy 
with an increase in the value of k, starting from zero. The results of the corresponding numerical ex-
periment are shown in Fig. 4.

Fig. 4. Quasienergy and angular momentum depending on the magnitude of the interaction of the oscillators k

The upper figure shows the quasienergy values at the phase ratio 1 2 3j j j= =  (s = 0), which corresponds 
to the zero value of the angular momentum, and the quasienergy values at the phase ratio 2 3 1 2 / 3j j j π= − = ±  
(s = 1), which corresponds to the maximum value of the average angular momentum. The lower figure 
shows the values of the average angular momentum at s = 1 and the corresponding values of the parame-
ter k. Discontinuities in the graphs arise due to the fact that in the regions of the corresponding values 
of the parameter k, the solutions of the equations are not chaotic but regular (periodic).

Conclusion

It may seem strange that the results obtained for regular solutions in the case of interaction of an ex-
ternal field with a system of harmonic oscillators turn out to be similar in the case of nonlinear Duffing 
oscillators with chaotic solutions. In fact, this is largely due to the properties of the symmetry of the 
system. Similar conclusions can be obtained, for example, by examining a quantum mechanical system 
of three nonlinear oscillators located in an external field similar to the one discussed above. The density 
matrix of such a system, which determines the population of an excited degenerate level, turns out to be 
proportional to the square of the matrix element 0 V i , where V is the operator of interaction with 
an external field, 0 corresponds to a non-degenerate ground state, and i corresponds to one of the  
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degenerate excited states due to symmetry. The corresponding equations for the density matrix are 
derived, for example, in the monograph (Blum 2012). For the case considered here, the operator of in-
teraction with an external field can be written as:

( ) cos( )j j
j

V t d f tω j= +∑ ,

where dj is the operator of the dipole moment of the j-th oscillator. Further calculation of the density 
matrix using symmetry properties leads to an average value of the angular momentum, with a dependence 
similar to (11).
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