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Introduction

Development of nanotechnology and miniaturization of electronic devices causes the necessity to 
take into account quantum properties of electron. It is a challenge, yet, it opens a possibility of designing 
novel devices based on quantum principles. One of such promising developments is a quantum computer. 
Currently, there are a few quantum computers in operation, however, they are very complicated and are 
not effective enough. Existing quantum computers can operate with a small number of quantum bits. 
The scaling of such devices is a great challenge. A possible solution to this challenge lies in the background 
improvements, e.g. in the use of triadic logic devices. The paper proposes a quantum multiplexer for the 
triadic logic device and develops a model to describe its processes. It deals with a system of coupled 
quantum waveguides (quantum wires) and quantum resonators (quantum dots). To describe the electron 
transmission through the system, we suggest using a model of zero-width coupling windows which has 
some advantages. Namely, it is solvable, i. e. it yields analytical results. On the other hand, its properties 
are similar to those of the corresponding physical system. The model has proven to be effective  
in many cases, see (Pavlov et al. 2001; Popov, Popova 1993a). 

The paper focuses on two-dimensional quantum mesoscopic systems, i. e. the physical systems where 
the electron phase coherence is preserved at a scale much larger than the atomic dimensions.  For such 
systems, quantum properties play an important role (Landauer 1957; Sols et al. 1989; Takagaki, Ploog 
1994). The studies of low-dimensional systems usually rely on the Landauer-Buttiker theory  
(Beenakker, van Houten 1991; Buttiker 1993; Landauer 1970) with its direct relation between  
the conductivity and the transmission coefficient for ballistic channels.
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Abstract. The paper explores the system of quantum waveguides and resonators. It suggests a solvable model 
of zero-width coupling windows based on the operator extensions theory in the Pontryagin space with 
indefinite metrics. The model self-adjoint operator is constructed explicitly, and it is similar (in some sense) 
to that of a physical system. We obtain an expression for the transmission coefficient for electrons and 
investigate its dependence on the electron energy which has a resonant character. It allows to control the 
electron transmission to different waveguides. The paper proposes a model of a three-channel quantum 
mesoscopic multiplexer.
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We consider waveguides connected with resonators through small apertures. It is very difficult to 
give a full description of such system (Exner, Kovarik 2015; Nazarov et al. 2019). For this reason,  
we propose an explicitly solvable model which preserves the main features of the corresponding real 
system. The model is analogous to the zero-range potential approach in quantum mechanics (Albeverio 
et al. 2005; Pavlov 1987). It is based on the theory of self-adjoint extensions of symmetric operators.  
The model of resonators coupled through small openings was suggested in (Melikhova, Popov 2017; 
Popov 1992; 1997; 2013). Resonance effects in the waveguide-resonator-waveguide system in the frame-
work of the model were the focus of (Popov, Popova 1993a; 1993b).

The paper is structured as follows: the first section provides a brief overview of a general mathematical 
scheme; section two focuses on the implementation of the model for the system of a branching quantum 
waveguide with inserted quantum resonators; finally, we discuss a possibility to apply the model  
to the development of a nanoelectronic device.

General mathematical scheme

The conventional operator extension theory approach to the description of resonators coupled through 
small windows may be found in (Vorobiev et al. 2019). Let us consider two domains Ω1, Ω2  with smooth 
boundaries having a common point r

0
. The initial self-adjoint operator for the model construction is the 

orthogonal sum of the Laplace operators in the domains. The next steps depend on the boundary condi-
tions. In the case of the Neumann boundary conditions, the restriction of the operator on the set  
of functions vanishing at point r

0
 gives a symmetric non-self-adjoint operator with deficiency indices 

(2,2). Correspondingly, a self-adjoint extension of the operator may be constructed. It is the operator 
which gives us the model in question. In the case of the Dirichlet boundary conditions, the restricted 
operator is essentially self-adjoint, i. e. it has deficiency indices (0,0). To construct the model for this 
boundary condition, it is necessary to extend the space L2 by adding elements with greater singularities 
at the point r

0
. As a result, we have to deal with the Pontryagin space. 

Let us briefly describe the model for the Dirichlet case (Popov 1992) using an indefinite scalar  
product. Let Δ1,2 be the Laplace operators with the Dirichlet boundary conditions in the domains Ω1,2 

with smooth boundaries having a common point r
0
. There are two ways of including functions with 

higher singularities into the space: either considering weighted space or deal with an indefinite scalar 
product. We follow the latter. Let us consider the following function:

which does not belong to L2. Here, G1,2 is the Green function for the Dirichlet problem in Ω1,2.  
Let us define the following set of functions:

Functions from this set have roots of at least first multiplicity at r
0
. It is necessary to ensure the integral 

convergence. Let us consider a pair of functions:

Here k0 is some imaginary number (k0
2 = λ0 is a regular point of the Laplace operator in Ω1,2).  

Now, we introduce another set of functions having singularities Ã1,2:

.

Here, the first term in the right-hand side is smooth: f 1,2 ∈  Ã  1,2 . It is necessary to define  
a scalar product in Ã1,2. It can be made in the following way:
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The set Ã1,2 is not yet a full space. It is embedded into the Pontryagin space Π1 by conventional way 
(Derkach et al. 2003; Popov 1992; Shondin 1988; van Diejen, Tip 1991).

Now, it is necessary to define the Laplace operator in this extended space. Let the domain  
of the operator  have the form: 

Here, f1, . On the set A1 the operator  acts as the Laplace operator and on the chain 
 the operator  is a shift operator: . One can prove that the operator  is self-

adjoint.
 The next step of the model construction is the so-called “restriction-extension” procedure.  

Let us restrict the operator  onto the following set:

The obtained operator   is symmetric and has deficiency indices (1,1) in the Pontryagin space.  
The construction procedure for the second domain for Ω2  is the same. Correspondingly, the orthogonal 
sum   is a symmetric operator with deficiency indices (2,2). Its self-adjoint extensions are 
restrictions of the adjoint operator. It is easy to describe the domain of the adjoint operator:

Here, To construct a self-adjoint extension one should find a linear set  
of elements from  satisfying the self-adjointness condition:

One can see that elements of  are such elements from that satisfy the condition 
Taking into account the known asymptotics of the Green function near the boundary point, we obtain 
the following:

Geometrical treatment of Lagrange planes leads to the following statement:

Theorem 1. The set of self-adjoint extensions of the operator –Δ0  consists of the sets of operators 
{–Δ

A 
}, {–Δ

B 
},  the domains of which consist of all elements from D(Δ*

0 ) satisfying the conditions

or

inhere A, B are Hermitian matrices.

Remark. We have no goal to describe all possible extensions. We deal with one extension only  
corresponding to the following matrix (Popov 1992).

  (1)
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The system of coupled waveguides and resonators

Let us consider the problem of electron scattering in the system of coupled quantum waveguides and 
resonators (Fig. 1). The construction of the model operator is the same as in the case of the two coupled 
domains described above. 

Fig. 1. The geometry of the system. Coupling points are marked

We choose “the most natural” extension (see remark at the end of the previous section).  
In this case the solution of the scattering problem for the model operator has the form:

  (2)

Here G
j
(r, r

j
, k) is the Green function for the Dirichlet problem in Ω

j
,r = (x, y), ψ

0
 (r, k) is the solution 

of the scattering problem for a semi-infinite waveguide Ω
1
 without point-like coupling windows  

(the sum of incoming and reflected waves), α
mn

 are coefficients to be determined. Taking info account, 
Theorem 1 and (l) one obtains the following linear system for α

mn
:

 
  (3)
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here

 

k
0
 is a model parameter. To choose it, one can compare the solutions of the model and realistic problems. 

This analysis showed (Popov 1992; 2013) that small width corresponds to large k
0
. Moreover,  

it is possible to choose the parameter in such a way that the model solution gives one the main asymp-
totic term (in the width of the window) of the corresponding realistic problem. We assume  
that all coupling windows are identical, in opposite case, it is necessary to introduce several parameters 
k

0j
 (one for each window). The expression for  for a semi-infinite waveguide is well known:

 

where  x* is a mirror image of the point x with respect to the end of the waveguide. Expression  
for g

2
(r

12
,k) (and, correspondingly, for g

4
(r

14
,k), g

3
(r

13
,k)) is

 

One can solve system (3) and obtain coefficients α
25

, α
36

, α
47

, which give us the transmission coefficients 
for channels Ω

5
, Ω

6
, Ω

7
, correspondingly.

Discussion

Let us consider the particular case for which the calculations were made. Let d
5
= d

6
= d

7
= d

1
/3, and 

l
2
, l

3
, l

4
 differs slightly. Let us compute transmission coefficients, i. e. the squares of modulus of coefficients 

α
25

, α
36

, α
47

,  as functions of the electron energy (k2) for this particular case to show the possibility of us-
ing the suggested construction. The dependences have a resonant character. There are resonant peaks 
when k2 is close to an eigenvalue of the corresponding resonator (see Fig. 2). The calculations were made 
for the first two resonant peaks for d

5
= d

6
= d

7
=3, l

2
=1, l

3
=1.1, l

4
=1.2 (in dimensionless units). This effect 

can be used for construction of a mesoscopic quantum device. 
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Fig. 2. Transmission coefficients to waveguides 7 (a), 6 (b), 5 (c) via the electron energy k2  (dimensionless units)

Namely, if electron energy is close an eigenvalue of the resonator Ω
2
 we have a resonant transmission 

to the channel Ω
5
 and almost zero transmissions to other channels. Varying electron energy we can 

obtain resonant transmission to the channel Ω
6
 (or Ω

7
) with zero fransmissions to other channels.  

We choose resonators with sizes which change slightly. Hence, small variation of k2 leads to switching  
of a signal from one channel to another. Here the control parameter is electron energy. 

Another control parameter can be used as well. For example, one can control resonant condition  
by changing parameters of resonators, or widths of coupling apertures. This can be made by varying the 
corresponding bias voltage.

In the suggested construction we use resonant properties of coupled resonators, but it is possible  
to use resonant properties of coupling apertures itself. The existence of such properties was shown for 
a system of waveguides coupled through small windows in (Popov, Popova 1993a; 1993b) (for the model) 
and in (Vorobiev et al. 2019) (for a realistic problem). A possible construction based on this effect will 
be developed and described in the nearest future.
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