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Abstract. It is known that self-organisation of nanostructures according to the bottom-up approach is driven 
by the competition of several processes: surface tension, diffusion, gravity, buoyant force and, perhaps, 
molecular coordination phenomenon. The last one was discussed in the 70s in terms of the so-called “mobile 
organised molecular arrays” and proved with the help of nuclear magnetic relaxation.  This study shows 
examples of self-organised structures obtained electrochemically by authors and provides a discussion 
regarding the same terms.
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Introduction

One of the most important ecological problems of the 21st century is plastic pollution. Using self-
disposable (biodegradable and self-degradable) polymer containers can be a solution; therefore, creating 
smart recycling polymers is a matter of high priority. It is important to understand processes underlying 
polymerisation in order to create polymers with “smart” behaviour. One of such processes is self-
organisation, which is taking place during polymerisation or cooling of the polymer melt. 

Self-organisation resulting in growth of nanostructures is considered to be an example of the bottom-
up approach as described in (Faynman 1960). Later ideologists of nanotechnology (Lehn 1988; Nicolis, 
Prigogine 1977) described self-organisation as competition between several forces: surface tension, 
diffusion, buoyant force, gravity and phenomena related to coordination, for example, atoms of transition 
elements and catalysis. These factors are responsible for the variety of forms appearing during polymerisation. 
Self-organisation in polymers occurs not only due to polymerisation of monomers but also due to the 
cooling of polymer and oligomer melts below glass transition temperature (Tc). It results in the appearance 
of peculiar formations, such as spherulites, lamellae and folds. It is believed that polymers demonstrate 
a specific mechanism of self-organisation that utilises the so-called “mobile organised molecular arrays” 
or “labile pre-pregs” (LP) (literal translation from Russian)—aggregation of monomers in the condition 
of chaotic movement (Gvozdetskii et al. 1968). Those arrays are capable of moving along the sample and 
responsible for morphological significances.

http://www.intphysiology.ru
mailto:levinkl@hotmail.com
https://orcid.org/0000-0002-1050-6609
https://orcid.org/0000-0003-0778-4023
https://creativecommons.org/licenses/by-nc/4.0/deed.ru


94 DOI: 10.33910/2687-153X-2020-1-3-93-98

Relaxation methods for studying transformations...

Relaxation methods

Fundamentals of relaxation processes in liquid dielectrics and melts are based on hydrodynamic 
(Debye 1929) and kinetic (Frenkel 1946) models. A modification for these models was made by Fröhlich 
(1958) and Davidson et Cole (1951). The most recognised equations for dielectric relaxation are the 
Cole–Cole (Cole, Cole 1941), the Havriliak–Negami (Havriliak, Negami 1967) and the Fuoss–Kirkwood 
(Fuoss, Kirkwood 1941) equations.

Viscous polymer systems differ both from the Cole–Cole and from the Fuoss–Kirkwood models, so 
modifications have to be made to them. 

It should be noted that two relaxation methods—dielectric spectroscopy and nuclear magnetic 
relaxation (NMR relaxation)—are widely used for studying molecular order and mobility in polymer 
systems. For example, both of them are used in (Borisova et al. 1980). However, due to the specific 
organisation of scientific experiments, the present research is based on the NMR relaxation as the majority 
of results relevant to this paper were obtained by this method.

Nuclear magnetic relaxation

The majority of studies on relaxation processes in dielectric melts were carried out by NMR relaxation 
methods. Theoretical background developed by Bloembergen, Purcell, and Pound (Bloembergen et al. 
1948) describes relaxation phenomena caused by dipole-dipole interactions of atomic nuclei. The system 
of nuclear spins forms a thermodynamic spin subsystem. The local magnetic field of this subsystem is 
sensitive to atomic environment. It can be studied by external alternating magnetic field. 

Nuclear magnetic relaxation study: Oligoetheracrilates

NMR relaxation is widely used for studying various polymers and polymer systems (Besghini et al. 
2019), such as polystyrene (Gasilova et al. 1993), micellar and liquid crystalline systems (Wong 2006), 
polyhydroxyalkanoates (Nishida et al. 2018), polyfluoroacryhlates (Borisova et al. 1980) and especially 
tetrafunctional oligoetheracrilates (OEA) (Fig. 1). The characteristic OEA feature is the formation of 
insoluble three-dimensional oligomers at early stages of their polymerisation. To explain this phenomenon, 
Gvozdetskii, Azizov, Gorbunova et al. (Gvozdetskii et al. 1968) suggested that molecules in liquid monomer 
and polymer systems with acrylic end-groups are set in ordered kinetically preferred states. Those states 
(LP) were essentially studied by Berlin’s group.

Several (from 3 to 5) relaxation areas are characteristic of molecular mobility processes: α, β, and γ 
transitions (in some cases additional β’, γ’ relaxations are present) (Berlin et al. 1983). Local relaxation 
processes related to small-scale movements of side groups and main network chains are referred to as 
β and γ transitions. They occur at lower temperatures, typically 140–180 K.

β’–type relaxation is observed due to freezing of mobility in complex oligomeric chains; for instance, 
in oligomeric chains containing complex ether groups. Rotational isomerism and rotational vibrations 
are sometimes believed to be primarily responsible for this type of relaxation.

Additional γ’ relaxation is observed in the case of side methane groups are present in some OEAs, 
e.g. oligocarbonmethacrylate. Rotation of these groups occurs at higher temperatures.

Processes of a relatively larger scale involve the motion of molecular chain parts with side groups and 
side chains; oligomers attached to them are known as α relaxation, glass transition being an example 
(230–360 K).

 In three-dimensional (spatially linked) polymers, relaxation processes tend to unite and become 
non-recognisable (Berlin et al. 1966), which, in turn, can be a sign of a complicated self-assembling 
process through an intermediate LP stage. Formation of lamellae, globules, and other morphological 
species suggests the influence of long-range interactions on their creation. Indeed, in α, ω - bis / meth-
acryloiloxy ethyleneoxy carbonyloxy/-1,3-propylene (MEKP) (R= —(CH2—CH2—CH2)—) the average 
size of globules was 1 µm (Table 1), which exceeded the definition of “nano”. In three-dimensional poly-
mers, such as phenol formaldehyde (Spurr et al. 1957) and epoxy resins (Basin et al. 1972; Erath,  
Spurr 1959), polymaleinates (Spurr et al. 1957) existence of non-uniform morphology was shown at 
microscopic scale. For example, for α and  γ MEKE (R= —(CH2—CH2)— (α, γ - bis / methacryloiloxy  
ethyleneoxy carbonyloxy/-1,3-ethylene) aggregation of primary globules followed by the formation  
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of anizodiametric structures with a characteristic size of 600–800 Å was observed, which was confirmed 
by SEM and SAX data.

Fig. 1. Tetrafunctional oligoetheracrylates

Supramolecular structure arising during polymerisation in complex polymers (terminology as cited 
in the original) was discussed by Berlin, Kireeva and Sivergin (1974). Their research concluded  
that the supramolecular organisation of polymers with highly ordered links of concentration higher  
than 5 ∙ 1020 cm−3 attained non-uniform, globular structure. The examples of such polymers are phenol-
formaldehyde and epoxy resins, polymaleinates, diallyl terephthalates.

Other researchers (Berlin 1970; Berlin et al. 1974; Berlin et al. 1983) came to the same conclusions, 
stating that the formation of stacked and liquid-crystalline structures was possible in the case of alter-
nating chemically active groups in the structurally regular liquid OAE oligomers. The stability of supra-
molecular structures was defined by the time of structural relaxation, which, in turn, depends on mo-
lecular spatial packing density, magnitude of intermolecular relaxation, viscosity, external conditions, 
dimensions of pre-cursor oligomers, and polymerisation conditions. Polymerisation conditions stand 
for the comprehensive influence of operating parameters (vibration, stirring, electromagnetic fields), 
physical conditions (temperature and pressure), as well as purity and homogeneity of oligomer mixture 
and other wide range of factors influencing the supramolecular polymer structure. Self-organisation 
with LP participation is believed to be of interest both for academic and applied science. 

In polymers below Тс the scale of pre-pregs containing micelles in sterically preferable positions  
by the order of magnitude can become close to micelles, distinguishable by electronic microscopy. 

Table 1. Average globule size for some OEAs

R Title Acronym Globules size, A 
R1 methacryloiloxy ethyleneoxy carbonyloxy/-1,3-ethylene MEKE 600–800
R2 methacryloiloxy ethyleneoxy carbonyloxy/-1,3-propylene MEKP 200–1000
R3 methacryloiloxy ethyleneoxy carbonyloxy/-1,3-dimethyl propylene MEKNPG 1000–1500

Above Тс relaxation studies revealed the existence of complex two-componential absorption lines in 
OAE, which are defined by Strzlecki, Liebert (1973) as a “molecular collective” formed by Van der Vaals 
(for non-polar) and dipole-dipole (for polar) molecules. Moreover, it was revealed that molecules in LP 
exist in the condition of continuous movement and re-organisation, in contrast to relatively stable lamel-
lae above Тс. However, it is not surprising, considering lowered steric limitations at temperatures Т≥Tс, 
but close to Tс, exactly up to Тс + 40°. Above the established upper limit, the lifetime of molecular as-
sociates became exclusively small (<10−4 –10−5 s).

In the course of conducted experiments various polymer structures were obtained electrochemi-
cally. Electrochemical deposition of conducting polymers onto metal surfaces was performed primarily 
for the purpose of corrosion protection (Iroh et al. 2003). Examples of morphologies, obtained electro-
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chemically, are shown in (Fig. 2) (Levine et al. 2005; 2019). Different electrolyte composition and forma-
tion surface resulted in dendritic (Fig. 2A) and vase-looking (Fig. 2B, C) morphologies, which possibly 
involved air bubbles driven by buoyant force. A structure typical to polypyrrole cauliflower (Fig. 2D) 
served as a surface for the formation of inverse bell (Fig. 2E), bell (Fig. 2F) and egg-looking (Fig. 2G) 
morphologies; morphologies obtained by others researches, demonstrated similar bell-shape PPy struc-
tures (Ammam 2012), and rectangular patterns (Sapurina, Shishov 2012).

Fig. 2. Morphologies obtained electrochemically

Conclusion

Self-assembling occurs in the process of chemical and electrochemical polymerisation of polymers. 
As a result, complicated morphologies are formed according to the bottom-up approach. These 
morphologies belong to both nano and micro-scales. Examples of these morphologies are globules, 
micelles, lamellae, folds, and microcontainers. Relaxation methods, in particular, nuclear magnetic 
relaxation and dielectric spectroscopy are sensitive to general parameters related to self-assembling, 
being together with microscopic methods, a way of its visualization.
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