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Abstract. Tide level during one year in time-domain measured at Dili port (East Timor) is analyzed by the 
frequency spectrum with the Fast Fourier Transform (FFT), together with the autocorrelation function (AF). 
The frequency spectrum shows a characteristic feature of the Lorentz-type resonance (Lorentz oscillator) 
with the special peaks which are attributed to the major tide constituents related to the gravitational motions 
of the sun and the moon. The Lorentz-type resonance occurs in water fluid systems under the periodic 
change in gravitational potential, which is similar to the electronic polarization under an electric potential 
change. The 1/f characteristics found at high frequencies in the power spectrum (the so-called 1/f characteristics 
in frequency domain) can be originated only from the gravitational effect, while its origin is usually discussed 
in terms of meteorology such as atmospheric pressure.

Keywords: tide level, fast Fourier transform (FFT), autocorrelation function, Lorentz oscillator, 1/f fluctuation.
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Introduction

The tide level should have time-to-time variations (time domain), involving periodic cycles (Banno, 
Kuriyama 2012; Kleinhans et al. 2017; Pugh 1996) due to gravitational actions. Meteorological effects 
such as atmospheric pressure may induce a complexity in the tide level. A popular technique for analyzing 
tides is the harmonic analysis (HA) in time domain (TD), in which the series of N harmonic constituents 
(sinusoids) are assumed (Pawlowicz et al. 2002; Ro et al. 2007; Stephenson 2016). Constructing a histogram 
for the tide level should also be useful to know the probability density at a particular level (Murthy, Rahi 
2014; Tomaselli et al. 2011). Another approach is to obtain a frequency spectrum (FS) in frequency 
domain (FD) (Franco 1997; Marone et al. 2013). The Fourier Transform (FT) is also a popular technique 
to obtain an FS (Banno, Kuriyama 2012). 

In this study, we will principally discuss the FS of tide level at Dili Port (East Timor) that is located 
near the equator (8.55° S, 125.56° E). The study explores a minute-by-minute data from a one-year period. 
It should be mentioned that the studies on the tidal changes from the area near the equator are few. Here, 
we will only focus on gravitational effects, while the meteorological effects, in general, cannot be ignored 
(Andrade et al. 2018; Pugh 1996; Truccolo et al. 2006). It is shown that the tide levels are dominated  
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by four major gravitational constituents from the sun and the moon (M2, S2, K1, O1) and tide level 
dynamics is replicated well by the Lorentz-type resonance (Wooten 1972). The FS shows two principal 
peaks (diurnal and semidiurnal) (Ro 2007; Stewart 2008) and another constituent (one year), together 
with a 1/f-like characteristics at higher frequencies (Banno, Kuriyama 2012; Kogan 2008). It is also shown 
that the histogram of the tide level observed in time domain is approximated to be a Gaussian distribution 
function.

The autocorrelation function (AF) of the tide change clearly shows an equivalency to the Lorentz 
oscillator, suggesting that the tide flow resonates with the change of gravitational potentials. An analogy 
between the electronic polarization in microscopic media and the macroscopic tidal changes is of interest 
in complex systems in physics (Draper et al. 2014; Garrett, Cummins 2005). It is suggested, through this 
equivalency, that the 1/f-like nature originates only from the gravitational effect, while its origin is 
commonly attributed to a change in meteorology (Andrade et al. 2018). 

Measurement system and analysis

Figure 1 shows the equipment instalation consisting of an ultrasonic system and a control circuit at 
Dili Port (Timor Leste) to which two of the authors are affiliated. This method is used to measure reflection 
between transmitting and receiving pulses of the ultrasonic wave. The pulses are controlled by the control 
circuit. The output pulse of the control circuit is converted and transferred to the Data Logger (DL).  
The DL performs the arithmetic processing of several signals from sensors which monitor the water 
level. The minute-by-minute annual data of the tide level are stored in the built-in memory and  
an SD card. The host device uses the RS-232C interface to communicate with the personal computer on 
which the “data processing software” is installed. 

Fig. 1. Instalation of equipment consiting of an ultrasonic system and a control circuit at Dili Port (Timor Leste). 
Fotografer: Author (Abelito Filipe Belo), 20 January 2021

The DL-collected data are Fourier transformed (Fast Fourier Transform: FFT). The Fourier transform 
(FT) of a time-dependent function f(t) is given by 

  (1)

where F(f) is the Fourier spectrum and |F(f )|2 is called the power spectrum, and f is the frequency 
(s–1) (Kogan 2008; Papoulis 1962). 
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FFT is an algorithm that computes the discrete F(f ) (Zonst 2004). In general, a limited number (= 2n) 
of discrete data, where n is an integer, is required to perform the FFT. We take the MATLAB programme 
that allows to remove this limitation and the minute-by-minute one-year period import data of the tide 
level (data number N = 544778) are Fourier transformed. The time interval of the data ∆t is, therefore, 
given by tp/N, where tp is the period of measurement time. The frequency interval ∆f is given as

  . (2)

The autocorrelation function of a time-dependent series is the average measure of its time-domain 
properties, being average product of the signal f(t) and a time-shifted version of itself, and is a function 
of the imposed time shift τ, i.e., C(τ) = <f(t)f(t + τ)> (Geng, Boufadel 2017; Kogan 2008 ). C(τ) is, therefore, 
useful for obtaining the information of the signal periodicity and its decay (loss of correlation), where  
τ is the correlation time. FT of C(τ) gives the power spectrum of F(f), which is the well-known  
Wiener—Khintchine theorem (Kogan 2008):

  (3)

Results and discussion

The tide level data at Dili Port (Timor Leste) were obtained for the period from May 2018 to July 2019. 
Note that the tide level is defined as the change from the chart datum level (CDL: minimum tide level is 
set to zero in one year). Figure 2 shows the measured time-dependent tide level h(t) at every 1 minnute 
for one year. Amplitude modulation (AM)-like behavior (beat) is found, which is produced when two 
frequencies, f1 and f2, are close each other, i.e., the beat frequency is f1 – f2. The periodical time of the beat 
is, therefore, 1/(f1 – f2). Details on this issue with the harmonic analysis (HA) will be discussed later.  

Fig. 2. Minute-by-minute one-year period data of the tide level

It may also be useful to show a histogram for the tide level h in which the probability density at a 
particular tide level can be obtained. The number of occurrences of each level is counted for this object. 
Discrete bars shown in Fig. 3 present the tide-level distribution for the total data set (NT = 544778). It is 
found that the tide level follows a Gaussian distribution and is given by (Walpole et al. 2017): 

  (4)

where A is a constant, σ is the standard deviation, and h and hm are the tide level and its average, 
respectively. 
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Fig. 3. Tide level distribution. Solid lines are predictions from the Gaussian (normal) distribution

The dashed line in Fig. 3 shows the probability density calculated from the G(h) (A = 2.9 × 106,  
σ = 56, and hm = 175). A more accurate comparison between the data and the probability distribution 
function should be given by an integral form of the histogram and the probability density, producing the 
probability only. Solid lines in Fig. 3 only show the probability calculated from the data (histogram) and 
the Gaussian distribution (red solid line) using the same parameters. Both curves fit well suggesting that 
the histogram basically follows a Gaussian distribution.

As is already stated, the discussion of the autocorrelation function C(τ) may be helpful to understand 
the underlying physics of the tide change, which produces information on the  periodicity and keeps 
memory of the time of events (Kogan 2008). Figure 4 shows the autocorrelation functions of the practi-
cal tide for the imposed time shift, (a) τmax = 30 days (2.59 × 106 s) and for (b) τmax = one day (8.64 × 104 s). 
Here, we use the correlation time τ (not t) as a time variation. As seen for the h(t) in Fig. 2, C(τ) shows 
the periodicity with beat. The time at which C(τ) is first crossing zero is a characteristic time τ0 (C(τ0) = 0), 
which is a measure of the time of losing memory of an event and is estimated to be 1.25 × 104 s (~3.5 hr). 
The first (positive) peak at 4.54 × 104 s (~12.6 hr) and the second one at 8.96 × 104 s (~24.9 hr), respec-
tively, are the mode frequencies of semidiurnal and diurnal changes in h(t) (see also Fig. 2). 

Fig. 4. Autocorrelation functions of the practical tide for (a) τmax = one month, and for (b) τmax = one day
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These semidiurnal (M2 = 2.236 × 10–5 Hz, S2 = 2.315 × 10–5 Hz) and diurnal (K1 = 1.161 × 10–5 Hz,  
O1 = 1.076 × 10–5 Hz) modes can be attributed to the four major gravitational constituents from the sun 
and the moon. Magnitude of the semidiurnal mode is larger than the diurnal one (see Table 1). 

  Table 1. Standard values of relative amplitude and frequency for the semidiurnal (M2, S2) and diurnal (K1, O1) 
gravitational components of tide (Stewart 2008) 

Relative amplitude An Frequency fn (Hz) Phase θn (rad)

M2 0.454 2.236 × 10–5 –2.2
S2 0.212 2.315 × 10–5 –1.6
K1 0.266 1.161 × 10–5 0.0
O1 0.189 1.076 × 10–5 –0.5

The beat periods related to the semidiurnal mode should be 1.27 × 106 s and to diurnal one,  
1.18 × 106 s, which is consistent with the actual data shown in Fig. 2. The same beat periodicity  
on the C(t) is found in Fig. 4 (a). The sinusoidal-like periodic response is similar to the Lorentz-type 
resonance in time domain, i.e., 

  (5)

where A is the amplitude of displacement, γ the decay rate (s–1), and f the frequency (Kogan 2008). 
The Lorentz-type displacement Y(f) in frequency domain, i.e., the Fourier transform of C(t), is known as 
(Kogan 2008; Wooten 1972)

  (6)
 

where B is a constant, f0 is the resonance frequency, and γ is the damping frequency (decay rate in 
time domain).

The solid (black) line (a) in Fig. 5 shows the power spectrum |H(f)|2 (cm2 Hz–1) obtained from the FFT 
of the time-variation of real tide h(t) (practical data). The semidiurnal and diurnal peaks appear  
at ~2.3 × 10–5 Hz (peak 1) and 1.1 × 10–5 Hz (peak 2), respectively. Each peak splits into two peaks, pro-
ducing the beats in h(t) in time domain (see Fig. 2). Peaks 1 and 2, respectivey, are composed of the  
K1 and O1 and M2 and S2. The beats from the sets of (K1 ,O1) and (M2 and S2) are found in h(t) shown  
in Fig. 2. 

Fig. 5. Power spectrum of the tide level. Black solid line (a) is practical data; red line (b) is the model tide  
(Lorentz oscillators). 1 and 2 are the semidiurnal and diurnal peaks, respectively

Supposedly, the tidal change follows the Lorentz-type relaxation and the discussion in the frequency 
domain may clarify this point. Using eq. (5), the power spectrum |H(f)|2 is approximated by|

  (7)
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where Bi is a constant, f0i and γi is the resonant frequency and the damping frequency for i-th com-
ponent, respectively. The solid line (b) shows the absolute intensity of the Lorentz oscillator (here |H(f)|2) 
with the fitting parameters given in Table 2. 

Table 2. Physical parameters for the Lorentz oscillators used for the fitting. Ci is the relative amplitude  
of Bi of the component (see text)

f0i (Hz) Bi (cm2 × Hz) γi (Hz) Ci

semidiurnal 2.28 × 10–5 1.0 × 10–11 1.0 × 10–8 0.63

diurnal 1.10 × 10–5 6.1 × 10–12 1.0 × 10–8 0.36

1 year 3.17 × 10–8 2.0 × 10–13 7.0 × 10–7 0.01

For simplicity, we took one (average) frequency for the semidiurnal and dirnurnal peaks. At lower 
frequencies, in addition to these two peaks, we need another 3rd component (one-year periodicity) 
(Banno, Kuriyama 2012), since the |H(f)|2 takes a constant value, without the 3rd component.  Overall 
fitting of the Lorentz oscillator, including the 3rd constituent, to the practical data is reasonably good. 
At higher frequencies, we observe a decrease in the intensity with increasing frequency f, which is ap-
proximately proportional to 1/f2. This type of frequency-dependent behavior is similar to the 1/f noise 
or 1/f fluctuation (Kogan 2008). Note that the relative magnitudes of the Lorentz oscillator Ci in Table 2 
are consistent with the relative intensity of the gravity constituents (M2 + S2, K1 + O1) (see Table 1). 

Let us discuss tidal dynamics in more detail.  It was shown that the power spectrum of the tide change 
was replicated well by the Lorentz oscillator. A popular example of the Lorentz oscillator (harmonic 
oscillation with damping) can be the dynamics of an electronic polarization, i.e., electronic displacement 
under a periodic electric field motion (complex dielectric function) (Wooten 1972) or a mechanical 
spring motion. For electronic displacement x under the external field F, the system follows Newton’s 
second law as

  (8)

where M is a mass (electronically charged), γ is the damping coefficient, and ω0 is the angular resonant 
frequency (= 2πf0). The solution of the above equation under some conditions gives Eq. (5) or (6). When 
the second term in Eq. (8) is dominant, the Debye type dielectric relation dominates the system  
(no oscillation). Note also that the above resonant phenomena can be represented by an equivalent 
electrical circuit, i.e., RLC series connection (resonance circuit), where R is the resistance, L the induc-
tance, and C the capacitance in the sense of electrical engineering (Kogan 2008; Prandle 1980). It was 
interesting to find out that the water fluid system under the periodic change in gravitational potential  
is phenomenologically the same as the electronic polarization under an electric potential change. 

In addition to gravitational motion of the sun, the moon, and the earth,  meteorology effects such as 
atmospheric pressure and wind power also contribute to the tide level (Andrade et al. 2018; Truccolo 
et al. 2006). Other contributing factors include the shape of the beach, coastline, and coastline depth 
(Kleinhans et al. 2017; Marone et al. 2013). While all these oceanic effects may dominate tidal behaviors, 
here we discuss the gravitational effect only. We once again suggest that the 1/f-like nature at high 
frequencies originates gravitationally (nature of low-pass filter) without involving a meteorological effect.  

Finally, we briefly discuss the harmonic analysis (HA) in time domain (Stewart 2008). We can model 
the series with I harmonic constituents of sinusoids (Stephenson 2016):

 , (9)

where An is the relative amplitude of the nth component (cm), fn is the frequency (Hz), θn is the phase 
angle (rad), H0 is the mean sea-level (cm) and C is the multicable constant (cm). In the present study,  
H0 (= 180 cm), C (= 105 cm), and θn is taken as fitting parameters, while the major constituents  
(M2, S2, K1, O1) are taken as the tide wave of gravitational origin (I = 4) (see Table 1). Here, a one-year 
constituent (Matsumoto et al. 1995) was not involved in the HA. Comparisons of the actual tide change 
(black) with the model tide (red) are shown in Fig. 6 for the first one month. It is shown that the actual 
tide level is replicated well by the standard four parameters, M2, S2, K1, and O1 with some deviations. 
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Fig. 6. Actual tide (black) and model tide (red) for the first one month

Conclusion

The minute-by-minute change in the tide level for a one-year period was measured at Dili port  
(East Timor). It was found that the histogram of the tide level in time-domain was approximated to be 
the Gaussian distribution function, with the mean height of 175 cm and the standard deviation  
of 56 cm. The frequency spectra through the Fast Fourier Transform (FFT) showed the two clear peaks 
(semidiurnal and diurnal) induced by the gravitational motions of the sun, the moon, and the earth.  
It was also suggested that the constituent of one-year dominated the power spectrum at low frequencies 
with no clear peak. The power spectrum was replicated well by the Lorentz oscillator, indicating that the 
tide flow resonates with the gravitational forces, which is phenomenologically the same as the electronic 
polarization under the electric field: Microscopic dynamics spans to macroscopic one.  The spectrum 
shows the 1/f nature found at higher frequencies in the frequency spectra is a result of the Lorentz-type 
response. Origin of 1/f characteristics can therefore be attributed only to the gravitational effect without 
involving the meteorological one.  It was shown by a harmonic analysis that the actual tide change was 
replicated well by the four standard gravitational parameters, M2, S2, K1, and O1. It was concluded that 
tidal behavior follows nature’s orders even in complex systems of the globe.  
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