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Introduction

The phenomenon of spontaneous symmetry breaking is widespread in various physical systems,  
from the simplest mechanical systems to objects studied by cosmology. The essence of the phenomenon 
is that, despite the invariance of the equations of motion describing the system with respect to some 
transformations of symmetry, the system turns out to be in a state that is not invariant with respect  
to these transformations. For example, in the theory of molecular spectra, the Hamiltonian of a molecule 
is invariant under the operations of permutation of identical nuclei and inversion. The corresponding 
transformations form a complete permutation-inversion group of the nuclei of the molecule (Bunker 
1979). However, in real molecules, some of the corresponding movements (permutation of the nuclei, 
or the movement leading to the inversion of the nuclei) are unrealizable. As a result, the actual symmetry 
of the molecule is lower than that of the original Hamiltonian. The symmetry group corresponding to 
the realized motion is defined by the Banker as the molecular symmetry group, which is a subgroup  
of the symmetry group of the original Hamiltonian.

A typical example is the tetratomic molecules AB3, whose equilibrium structure of the nuclei is  
a tetrahedron with the base of a regular triangle (Fig. 1).

The combination of operations of inversion of nuclei and permutation of two identical nuclei results 
in the new configuration of the molecule, equivalent to the movement of the nucleus A through the plane 
formed by the nuclei B. This movement is realized in the NH3 molecule, but it is not realized in the NF3 
molecule. As a result, the molecular symmetry group of the NH3 molecule is isomorphic to the point 
symmetry group D3h, and the molecular symmetry group of the NF3 molecule is isomorphic to the point 
symmetry group C3v (Bunker 1979). Thus, one can say that in the NF3 molecule the symmetry is broken, 
unlike in the NH3 molecule.
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Fig. 1. Tunneling in a molecule AB3

It should be noted, however, that if the NH3 molecule is in the lowest vibrational states, then  
the motion considered above is low probable. In this case, we can talk about tunneling through  
the potential barrier when the nucleus A passes through the plane formed by the nuclei B. Taking into 
account the fact that the motion of the nuclei of a molecule can be considered in a quasi-classical 
approximation, the description of such tunneling is included in a number of textbooks as an educational 
task (Landau, Lifshitz 1977). The consequence of tunneling is the splitting of the energy level corresponding 
to the movement within a single minimum of energy (Fig. 2).

Fig. 2. Splitting in a system with W-potential due to tunneling

If we denote the wave function describing the motion in the region of one of the minima in disregard 
of tunneling through ψ(x), then the wave functions corresponding to the split levels are superposition 
of the functions describing the motion in each of the corresponding pits:

The splitting of the energy levels ΔE is proportional to the tunneling probability. With a low probability, 
and, accordingly, a small splitting, the probability of detecting a molecule in the region of one of the local 
minima oscillates according to the law:
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Since the oscillation period gradually increases with a decrease in the probability of tunneling, it is 
strictly impossible to determine at what specific value of ΔE the symmetry breaking occurred. In accordance 
with the definition of Bunker (Bunker 1979), we can assume that the symmetry is broken if the molecule 
remains in one of the configurations near the local minimum during the observation period. That is, the 
symmetry is broken at , where tobs is the observation time.

Chaotic motion in classical systems with W-potential

The potential shown in Fig. 2, usually called W-potential, can be modeled, in particular, by the 
expression:

,

where the parameters α < 0 and β > 0. In classical mechanics, the motion of a body of a unit mass  
in such a potential in the presence of a viscous friction force and an external periodic force is described 
by the Duffing equation:
 .  (1)

In this equation, the parameter γ characterizes the dissipation, and the parameters f and ω the am-
plitude and frequency of the external force.

Depending on the parameters of the problem, forced oscillations can capture the regions of both 
minima, or occur near one of the minima. At a sufficiently large value of the driving force f and a small 
depth of the pit  , the oscillation captures the regions of both minima, and with a decrease  
in f and (or) an increase in ΔU, it shifts to the region of one of the pits, without crossing the potential 
barrier. 

A characteristic feature of the solutions of the Duffing equation is the occurrence of chaotic oscilla-
tions for certain sets of equation parameters. In the case of chaotic oscillations, the motion extends  
to both minima. In this case, the chaotic attractor has a certain symmetry, which is well shown in the 
fractal picture of the Poincare section (Liaptsev 2013). At the same time, with other sets of parameters, 
the movement can have a regular character, that is, be periodic. The system described by the Duffing 
equation with the parameter γ > 0 is a typical example of a dissipative system in which chaotic motion 
has certain features. Equation (1) can be written as an autonomous system of three differential equations 
of the 1st order:

 

υ
υ  (2)

The trajectory of the system in chaotic motion tends to the chaotic attractor (strange attractor). Since 
the dependence of the right side of equations (2) on the variable φ is determined by the periodic function, 
we can assume that φϵ[0,2π]. The trajectory of motion in the phase space can be represented as  
a line “wound” on the torus (Fig. 3), and the Poincare section is a fractal (see, for example, (Schuster 1984)). 

Fig. 3. Poincare cross section for the system (2)
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The regularity of chaotic motion, which is clearly shown in the characteristic picture of the Poincare 
section allows us to introduce the probability density ρ(φ,x,υ), which determines the probability that the 
system is in the region of the phase space dφdxdυ (Liapzev 2019; 2020):

.

The probability density determined this way is normalized by one and satisfies the equation:

 , (3)

where the differential operator L is defined by the expression:

 . (4)

Equation (3), unlike the original Duffing equation (1), is a linear equation, so the probability density 
has properties characteristic of solutions of linear equations. In particular, for a small change  
in the operator L, the change in the probability density is also small. This allows us to use one or another 
version of the perturbation theory to calculate the average value of a certain physical quantity. That leads 
to the fact that if a change in the operator ΔL can be represented as a sum:

,
where λn are small parameters, then the average value of any physical quantity that depends  

on the variables φ, x, υ, is also a linear function of these parameters. A numerical experiment for the case  
of specific perturbation operators confirms the validity of the above statement (Liapzev 2020).

It should be noted that such linear properties occur only for chaotic motion, when the attractor is  
a chaotic attractor, and changes in the parameters keep the motion chaotic. The probability density  
in this case can be modeled as some smooth function of the variables φ, x, υ. In case of regular motion, 
the variables φ, x, υ are periodic functions of time, and the attractor is a limit cycle with a period 2πn/ω, 
where n is a natural number. Within a single period, the variables x and υ can be expressed as single-
valued functions of the variable φ :

.

In accordance with equations (2), the functions g(φ) and h(φ) satisfy the equations:

The probability density in this case is no longer a smooth function, but can be expressed as the 
δ-functions:

,

where C is the normalization coefficient. It is easy to show that the probability density determined  
in this way satisfies equation (3). However, small changes in the parameters of the equation in this case 
can lead to an abrupt change in the nature of the movement. As a result, with a small change in the 
parameters, the system may transfer to a new attractor in the form of a limit cycle or to a chaotic attractor.

Symmetry breaking for solutions of the Duffing equation

The potential corresponding to the conservative force in the Duffing equation is symmetric with 
respect to the coordinate inversion transformation. However, the equation of motion (1) itself does not 
have such a symmetry. Nevertheless, the symmetry is preserved if we use a set of transformations that 
leave equation (1) invariant:
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When moving from equation (1) to a system of autonomous equations (2), the set of transformations 
that leave this system invariant can be written as:

  (5)

It is easy to see that the set of transformations (5) leaves the operator L, defined by equality (4), 
invariant. It follows from equation (3) that its solutions must be either even or odd functions with respect 
to the set of transformations (5). Since the probability density is by definition a positive value, we get the 
equation:

 . (6)

In the case of the W-potential, the probability density satisfies the relation (6) if the oscillations cap-
ture the regions of both minima. However, when the amplitude of the external field decreases, the oscil-
lations are limited to either the region x < 0 or the region x > 0. This means that, depending on the initial 
conditions, one of the solutions exists: ρ<(φ, x, υ), which turns to zero at x > 0, or ρ>(φ, x, υ), which turns 
to zero at x < 0. The initial symmetry in this case manifests itself in the relations:

 . (7)

Let us now assume that for a certain set of parameters, the symmetry is broken, so that, depending 
on the initial conditions, the solutions ρ<(φ, x, υ), or ρ>(φ, x, υ), are realized, but the movements in both 
cases remain chaotic. Let us also assume that with some small change in the parameters, the symmetry 
is restored, and the character of the motion remains chaotic. This means that the symmetry breaking 
occurs when the operator L changes slightly. This, in turn, means that perturbation theory can be applied 
to find solutions. The case in question is similar to the quantum mechanical problem with W-potential. 
The solution for the probability density for chaotic oscillations involving both pits can be obtained from 
perturbation theory and in the zero order has the form:

 . (8)

Thus, we can say that the principle of superposition of solutions is fulfilled, but, unlike the quantum 
mechanical problem, not for wave functions but for probability densities.

Numerical results

The validity of the above assumption can be verified by a numerical experiment. However, the attempt 
to use the solutions of the Duffing equations is unsuccessful. If, for some parameters, the oscillations are 
chaotic and capture the regions of both pits, that is, the transitions over the barrier realize, then when 
the symmetry is broken, the oscillation in the region of one of the pits turns out to be periodic, that is, 
instead of a chaotic attractor, the solution tends to the attractor in the form of a limit cycle. In this case, 
it is impossible to check the relation (8). The reason for the transition to the limit cycle is, apparently, 
that chaotic oscillations in the system described by the Duffing equation are realized either at large values 
of the amplitude of the driving force, or when there is a local maximum potential in the oscillation region. 
It is easy to show that for a quadratic potential, small oscillations, driving with harmonic force, can occur 
both in the case when the potential has a minimum (near the minimum) and in the case when the potential 
has a maximum (near the maximum). However, oscillations near the minimum are stable, and unstable 
near the maximum. Namely this kind of instability can generate chaotic motion.

The above considerations suggest that making the oscillations in the region of one of the pits chaotic 
when the symmetry is broken, it is necessary to complicate the shape of the potential by adding maxima 
to each of the pits. At the same time, it is desirable that for large values of the coordinate, the potential, 
like the potential in the Duffing equation, increases proportionally to the fourth power of the coordinate. 
In this paper, we used for the calculation the potential:

  , (9)

where the potential maxima are provided by the Lorentz distribution function:
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The parameters α0 and α1 determine the heights of the central and side local maxima, the parameters 
β0 and β1 determine the widths of these maxima, and the parameter dx determines the shift of the side 
maxima relative to the central maximum. For further calculations, the following values were used:  
α0 = 7.5, α1 = 2.3, β0 = β1 = 0.3, dx = 1. The potential graph is shown in Figure 4.

Fig. 4. Graph of the potential defined by the expression (9)

The numerical calculation was carried out for an equation similar to the Duffing equation, with  
a modified force:

 ,

where  and U(x) is defined by the expression (9). The parameters determining the dissipa-
tion and frequency of driving force were assumed to be equal, γ = 0.2, ω = 3.9 respectively. The nu-
merical calculation shows that at the value of the driving force amplitude f = 1.85, the oscillation at these 
parameter values is chaotic and captures the regions of both pits. Meanwhile, for quite long periods the 
oscillation occurs in one of the pits with rare jumps from one pit to another. For f = 1.84, a symmetry 
breaking occurs, so that the oscillation, which is also chaotic, is limited to the region of one of the pits, 
depending on the initial conditions. 

The calculation of probability densities was carried out on a time interval equal to 10,000 periods  
of driving force. As a result of the calculation, a three-dimensional array ρ(φi, xj, υk), was calculated.  
The array size is 120 × 101 × 101. The values of ϕi were distributed over the interval [0,2π) in a regular 
way. The values of xj and υk were uniformly distributed over the intervals [–xmax, xmax] and [–υmax, υmax], 
respectively, where xmax and υmax are the maximum values of the coordinate and velocity modulus obtained 
as a result of calculations on this time interval. 

Since the superposition principle is only statistically valid, an element-by-element comparison of the 
arrays included in equality (8) is meaningless. A visual comparison of the results can be illustrated by 
the graphs below. 

The probability density averaged over the variable υ

To graphically represent the probability density on a two-dimensional graph, we define the average 
density by the ratio:

where Nυ = 101 is the dimension of the array along the υ axis. Figure 5 shows graphs of the probability 
density  at f = 1.84, when the symmetry is broken, that is, oscillations occur in the region  
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of one of the pits depending on the initial conditions. On the horizontal axis, the x value is plotted, and 
on the vertical axis, the φ value is plotted. Darker areas correspond to a higher probability density.

Fig. 5. Graphs of the average probability density (see the text)

The probability density distribution in the left graph corresponds to the oscillations in the left pit  
(x < 0). To clearly demonstrate the symmetry, the right graph shows the probability density of oscillations 
in the right pit (x > 0), transformed in accordance with the relations (5), that is, inverted with respect  
to x and shifted by π with respect to φ. 

Figure 6 shows the probability density distribution graphs calculated at f = 1.85 (upper graph) and 
f = 1.84 (lower graph). To visually verify that the superposition principle is fulfilled, the probability den-
sity obtained for the left pit ρ<(φ, x, υ), is shifted by π and inverted, after which the superposition (8)  
is calculated. Note that, due to the symmetry, an almost indistinguishable picture is obtained if instead 
of the relation (8) we use the relation:

 .

Fig. 6. Graphs of the average probability density (see the text)
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Cross sections at ϕ = const

Other graphs that allow us to visually judge the fulfillment of relation (8) are the sections  
of the probability density graph at constant values of φ. Figure 7 shows the graphs at φ = 0 (left graphs) 
and φ = π (right graphs). 

Fig. 7. Graphs of the probability density cross section (see the text)

As in the previous figures, the upper graphs correspond to the probability density calculated  
at f = 1.85, and the lower ones calculated at f = 1.84 for oscillations in the left pit and combined in ac-
cordance with the superposition principle (relation (8)). In addition to illustrating the superposition 
principle, the graphs also illustrate symmetry. Rotation of the right graphs by 180° around the axis per-
pendicular to the drawing plane (transformations x→–x, υ→–υ) gives an image that is almost indistin-
guishable from the left graphs.

Quantitative estimation of the results

To calculate a certain quantitative estimate of the fulfillment of the superposition principle, we turn 
to the equation for the probability density, which in the case of the potential chosen by us has the form:

 , (10)

where , and U(x) is defined by the expression (9). It is easy to show that if some positive 
function ρ(φ, x, υ), is found that satisfies equation (10), then for any real value p, the function (ρ(φ, x, υ))p, 
will also satisfy equation (10). Now, let us define the function:

 . (11)

In the probabilistic sense, the function ψ(φ, x, υ) is analogous to the quantum mechanical wave func-
tion, its modulus square gives the probability density. However, first, the definition (11) does not allow 
us to uniquely define the function ψ(φ, x, υ), based on the function ρ(φ, x, υ). The function ψ(φ, x, υ) 
multiplied by an arbitrary phase factor depending on the variables φ, x, υ, will also satisfy the relation 
|ψ(φ, x, υ)|2 = ϱ(φ, x, υ). Secondly, in this case, there are no properties similar to the properties of quantum 
mechanical wave function (quantization, interference, etc.). However, definition (11) can be used to 
quantify the proximity of two different solutions for the probability density. To do this, we can use the 
concept of a scalar product similar to the scalar product of quantum mechanical functions. For the two 
calculated probability densities ρ1(φ, x, υ) and ρ2(φ, x, υ), the scalar product of the corresponding func-
tions ψ1(φ, x, υ) and ψ2(φ, x, υ) can be defined as follows:
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 , (12)

where Nφ, Nx and Nυ determine the dimension of the array ρ(φi, xj, υk). Obviously, the scalar product 
defined in this way can take a value from 0, when the probability densities are completely different, to 1, 
when the probability densities are completely the same. Thus, we can give the relations (7) and (8) some 
quantitative estimation. According to the relation (11), we define for the probability density ρ>(φ, x, υ) 
the function ψ>(φ, x, υ), and for the probability density ρ<(φ+π, –x, –υ), the function ψ<it(φ, x, υ). Calcu-
lated in accordance with the above definition, the scalar product gives the following value: . 
This quantitatively confirms the manifestation of the properties of symmetry presented in the above 
figures.

Similarly, to quantify the validity of the principle of superposition of solutions (8), we define for the 
probability density ρ(φ, x, υ) function ψ(φ, x, υ) according to the relation (11), and for the probability 
density  (the right part of equality (8)), the function ψsuperp(φ, x, υ). Then the 
numerical evaluation of the validity of the superposition principle can be determined by calculating the 
scalar product of the functions ψ(φ, x, υ) and ψsuperp(φ, x, υ) in accordance with the definition of the scalar 
product (12). The result of the calculations  corresponds to the similarity of the graphs 
shown in Figures 6 and 7.

The superposition principle in classical systems with dynamic chaos  
and in quantum mechanical systems

From the above, an analogy follows between the quantum mechanical problem, in which the sym-
metry breaking is considered, and the problem of classical dynamics, which admits a solution with dy-
namic chaos. Just as in a quantum mechanical problem, the use of the superposition principle (Feynman 
et al. 2006) can be justified by applying perturbation theory to the linear equation that determines the 
solution of the problem. Indeed, let equation (10), which can be written as:

,
where 

 , 

define the probability density of chaotic motion and have two solutions ρ<(φ, x, υ)  and ρ>(φ, x, υ), 
which correspond to chaotic motion in the region of the left (x < 0) and right (x > 0) pits of a potential 
similar to W-potential (9). Due to the symmetry of the problem, the relation (7) holds. We will consider 
the operator L as an unperturbed operator. Let a small addition (perturbation):

  (13)
to the unperturbed operator lead to the fact that the solution of the equation

describes the chaotic movement that captures both pits. The solution ρ(φ, x, υ) in this case can be 
obtained by perturbation theory. In the zero approximation for ρ(φ, x, υ), we get the former equation. 
However, since the solution must now describe the motion in both pits, it is necessary to take a super-
position of the solutions ρ<(φ, x, υ) and ρ>(φ, x, υ). The symmetry properties and positivity of the ρ(φ, x, υ) 
function allow us to obtain only the solution proportional to the sum of the solutions ρ<(φ, x, υ) and  
ρ>(φ, x, υ), and from the normalization condition it follows that the coefficient for the sum must be equal 
to 1/2. 

The numerical experiment confirms the above relations. We have given just one concrete example. 
Calculations show that with an increase in the perturbation operator (13), that is, with an increase in 
the value of Δf, the corrections of the 1st order of the perturbation theory increase. This manifests itself 
in a decrease in the value of | it .

The introduction of functions proportional to the root of the probability density is convenient for 
evaluating the accuracy of perturbation theory calculations. However, they cannot be given the same 
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meaning of wave functions as in a quantum mechanical problem. This statement can be illustrated by 
the following example. As mentioned above, in a quantum mechanical problem with W-potential, the 
probability of detecting a molecule in the region of one of the local minima oscillates according to the 
law expressed by:

  (14)

These oscillations are manifested in the spectra of the corresponding systems. In the classic problem 
under consideration, we also observe jumps from one pit to another with long intervals of chaotic mo-
tion in the region of each of the pits. However, the numerical experiment shows that there is no regular 
periodicity similar to the oscillations (14). This statement is confirmed by the fact that the calculated 
Fourier spectrum for such motions does not have any clearly expressed maximum, in addition to the 
maximum at the frequency of the driving force ω.

Conclusion

This paper investigated only one special case of chaotic motion in the problem of classical nonlinear 
dynamics, however, the obtained conclusions can be generalized to other systems where dynamic chaos 
manifests itself. These conclusions can be formulated as follows.

1) Chaotic motion in dissipative systems of classical dynamics can be characterized by the probabil-
ity density of states in the phase space. The function corresponding to the probability density can 
be obtained by solving a partial differential equation.

2) For the solutions of this classic problem, the principle of superposition of solutions is valid, as is 
the case with the quantum mechanical problem.

3) The validity of the superposition principle can be most effectively shown in the problem that 
admits a symmetry breaking when changing some parameters. The validity is confirmed by the 
numerical experiment.
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