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Introduction

Particle production from vacuum by strong electric-like external fields—the Schwinger effect 
(Schwinger 1951) or the effect of the vacuum instability—is one of the most interesting effects in quan-
tum field theory (QFT) that scientists have already been researching for a long time. The effect can be 
observable if the external fields are sufficiently strong, e.g. the magnitude of an electric field should be 
comparable with the Schwinger critical field with . Nevertheless, recent 
progress in laser physics brings hope that an experimental observation of the effect can become possible 
in the near future (for the review, see Dunne 2009; 2014; Di Piazza, Müller, Hatsagortsyan et al. 2012; 
Mourou, Tajima 2014; Hegelich, Mourou, Rafelski 2014). Moreover, electron-hole pair creation from 
vacuum also becomes observable in laboratory conditions in graphene and similar nanostructures (see, 
e.g. Sarma, Adam, Hwang et al. 2011; Vafek, Vishwanath 2014). Various approaches have been proposed 
for calculating the effect depending on the structure of such external backgrounds (for a list of relevant 
publications see Ruffini, Vereshchagin, Xue 2010; Gelis, Tanji 2016). Calculating quantum effects in 
strong external backgrounds must be non-perturbative with respect to the interaction with strong back-
grounds. A general formulation of QED with time-dependent external fields (the so-called t-potential 
steps) was developed by Gitman (1977), Fradkin, Gitman (1981), and Fradkin, Gitman, Shvartsman 
(1991). It can be also seen that in some situations the vacuum instability effects in graphene and similar 
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nanostructures caused by strong (with respect of massless fermions) electric fields are of significant 
interest (see Gelis, Tanji 2016; Allor, Cohen, McGady 2008; Gavrilov, Gitman, Yokomizo 2012; Vafek, 
Vishwanath 2014; Kané, Lazzeri, Mauri 2015; Oladyshkin, Bodrov, Sergeev et al. 2017; Akal, Egger, Mül-
ler et al. 2019 and references therein). At the same time, in these cases electric fields can be considered 
as time-independent weakly inhomogeneous x-electric potential steps (electric fields of constant direc-
tion that are concentrated in restricted space areas) that can be approximated by a linear potential. Ap-
proaches for treating quantum effects in the explicitly time-dependent external fields are not directly 
applicable to the x-electric potential steps. A consistent non-perturbative formulation of QED with 
critical x-electric potential steps, strong enough to violate the vacuum stability, was constructed in the 
recent work (Gavrilov, Gitman 2016a). A non-perturbative calculation technique for different quantum 
processes, such as scattering, reflection, and electron-positron pair creation, was developed there. This 
technique essentially uses special sets of exact solutions of the Dirac and Klein-Gordon equation with 
the corresponding external field of x-electric potential steps. The cases when such solutions can be found 
explicitly (analytically) are called exactly solvable cases. This technique was effectively used to describe 
particle creation effect in the Sauter field of the form   , in a constant electric 
field between two capacitor plates separated by a distance  (the so-called -constant electric field), and 
in exponential time-independent electric steps, where the corresponding exact solutions were available 
(see Gavrilov, Gitman 2016a; 2016b; Gavrilov, Gitman, Shishmarev 2017). These exactly solvable models 
make it possible to develop a new approximate calculation method to non-perturbatively treat the 
vacuum instability in arbitrary weakly-inhomogeneous x-electric potential steps (Gavrilov, Gitman, 
Shishmarev 2019). Note that the corresponding limiting case of a constant uniform electric field shares 
many similarities with the case of the de Sitter background (see Anderson, Mottola 2014; Akhmedov, 
Popov 2015 and references therein). Thus, a study of the vacuum instability in the presence of the 
-constant electric field with large  may be quite important for some applications. Only a critical 
step with a potential difference 
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Δ𝑈𝑈 > 2𝑚𝑚  (where ξ  is the electron mass) can produce electron-positron 
pairs; moreover, pairs are born only with quantum numbers in a finite range—in the so-called Klein zone.

As a matter of fact, non-perturbative calculation techniques are related to the possibility of construct-
ing exact solutions of the corresponding relativistic Dirac and Klein-Gordon equations; for instance, 
solutions that have special asymptotics. Constructing such solutions is a rather difficult task. An adequate 
choice of variables in the corresponding equations can be useful to solve it. For instance, Narozhnyi and 
Nikishov (1976) found the above-mentioned solutions in a special representation considering the Dirac 
and Klein-Gordon equations with a constant uniform field given by time-dependent potential and choos-
ing the variables of the light cone (see also Gavrilov, Gitman, Shvartsman 1979; Gavrilov, Gitman, Gon-
çalves 1998). These solutions make it possible to explicitly find all kinds of the corresponding QED sin-
gular functions in the Fock-Schwinger proper time representation. This present article uses a 
non-commutative integration method of linear differential equations to consider the Klein-Gordon 
equation with the -constant electric field with a large  and uses the light cone variables to find new 
complete sets of its nonstationary exact solutions. These solutions can be related by integral transforma-
tions to previously known stationary solutions that were found by Gavrilov and Gitman (2016b). Then, 
the general theory developed by Gavrilov and Gitman (2016a) is used to construct—in terms of the new 
nonstationary solutions—the so-called in- and out-states of scalar particles confined between two ca-
pacitor plates.

In- and out-solutions

Let us construct in- and out-solutions of the Klein-Gordon equation with an external constant electric 
field, which is the so-called -constant electric field and belongs to the class of x-potential steps. The 
equation has the form

 (1)

where  are corresponding electromagnetic potentials, m is the particle mass and ,  
is its charge. For the purpose of generality, the problem is considered in -dimensional spacetime  
( ). Here , , , . The -constant electric field 

 has the form 
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 (2)

We assume that the corresponding x-potential step is critical and sufficiently large, so that  . 
In this case, the field  and the leading contributions to the vacuum mean values can be considered 
as macroscopic ones. However, this -constant electric field is weakly inhomogeneous, the correspond-
ing Klein zone is extensive, so that all the universal properties of the vacuum instability described by 
Gavrilov, Gitman and Shishmarev (2019) hold true. The -constant field in the limit  is a kind of 
a regularisation for a constant uniform electric field. In fact, the -constant field may be approximated 
in this limit by a constant uniform electric field given by a linear potential

 (3)

Consider stationary solutions of the Klein-Gordon equation with the following form:

 (4)

These solutions are quantum states of spinless particles with given energy  and momenta  per-
pendicular to the -direction. The functions  obey the second-order differential equation

 (5)

Let us construct two complete sets of solutions with the form (4) and denote them as  and 
,  with special left and right asymptotics:

The solutions  and  asymptotically describe particles with given real momenta  
along the  direction. The corresponding functions  are denoted by  and , respec-
tively. These functions have the asymptotics

Solutions  and  are subjected to the following orthonormality conditions with respect 
to the Klein-Gordon inner product on the x = const hyperplane:

 (6)
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Note that for two solutions with different quantum numbers , the inner product  can be 
easily calculated as

 (7)

Solutions  and  can be decomposed through each other as follows: 

 (8)

where the expansion coefficients are defined by the equations

Equation (5) can be written as

Its general solution can be written in terms of an appropriate pair of linearly independent Weber 
parabolic cylinder functions (WPCFs), either as  and   or  
and , where .

Using asymptotic expansions of WPCFs, the functions  and  can be constructed as

 

 (9)

 (10)

Their in- and out-classifications are related to the signs of the asymptotic momenta  and  (see 
Gavrilov, Gitman 2016b). Namely, 

 are in-states and  are out-states.
It is useful to construct two different complete sets of solutions of the Klein-Gordon equation (1) that 

are not stationary states and can be written as

 (11)

where  is a set of quantum numbers that will be defined below. In this case, the function  
satisfies the equation

 (12)

This equation admits integrals of motion in the class of linear differential operators of the first order, 
which are
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The operators ,  form a four-dimensional Lie algebra  with nonzero commutation 
relations

Equation (12) can be considered as an equation for the eigenfunctions of the Casimir operator 
,

At this stage, we follow a non-commutative integration method of linear differential equations 
(Shapovalov, Shirokov 1995; Bagrov, Baldiotti, Gitman et al. 2002; Breev, Shapovalov 2016), which allows 
us to construct a complete set of solutions based on a symmetry of the equation. An irreducible repre-
sentation of the Lie algebra  in the space of functions of the variable  is defined by the 
help of the operators :

where j parameterises the non-degenerate adjoint orbits of a Lie algebra . The following relations hold 
true:

Integrating the equations

 (13)

together with the equation (5), we fix  and derive a set of solutions which is characterised by 
quantum numbers ,

 (14)

The parameter  is an eigenvalue of the symmetry operator :

It is possible to interpret the quantum numbers  from the perspective of the orbit method: the 
parameter  describes the Casimir operator  spectrum and parameterises 
the non-degenerate orbits of the co-adjoint representation of the local Lie group  (in this case, the 
orbits are hyperbolic paraboloids), and the variation region of the parameter  is a Lagrangian sub-
manifold to these orbits.

In order to classify solutions (11), we define direct and inverse integral transformations that relate 
these solutions to solutions (4), which are stationary states, eigenfunctions for the operator .

We represent solutions of both equation (5) and
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in the following form

 (15)

Taking into account condition (13), the equation for the function  can be written as:

We choose its particular solution

 (16)

which satisfies the orthogonality relation

 (17)

The inverse to (15) transformation reads:

 (18)

Thus, direct (15) and inverse (18) integral transformation were defined with kernel (16) that converts 
solutions (14) into solutions that are eigenfunctions for the operator . Applying one of the integral 
transformations to solutions (14), we get:

 (19)

Then, comparing the equation (19) with the equations (9)-(10) gives the following correspondence:

 (20)

Transformation (18) makes it possible to derive orthonormality relations on the hyperplane  
for scalar particles constructing with the help of functions ,

 (21)

where 

 (22)

and determine the normalising factors ,

Thus, we obtain:
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Let us introduce the following notation:

It follows from (15) and (18) that

 (23)

Let us consider another type of solutions:

 (24)

The corresponding integral transformation is

Г
 (25)

Г

so that

 (26)

Using functions , we construct a new set of solutions

 (27)

which satisfies the following orthonormality relations:

Based on (25) and (17), the integral transformations are

 (28)
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There exist useful relations between solutions  and . Each of them is complete for  
a given  and can be decomposed through another one as follows:

 (29)

Equations

allow us to calculate coefficients  and ,

We note that the relations (29) are similar to the relations (8) that were established for the solutions 
 and  (in this case, the coefficients  do not depend on  and ). From (20) and (26) it 

follows that   are in-states and are out-states.
From the equation (24) it follows that

 (30)

Then, taking into account equations (29) and (30), we get:

 (31)

 

Since the coefficient  is not zero for all , the equations (31) imply a direct connection be-
tween the solutions  and  normalised on the hyperplane , 

Thus, using the non-commutative integration method for the equation (12), we obtained in- and 
out-states of scalar particles in terms of new solutions (22) and (27), which are non-stationary and are 
determined by a set of quantum numbers . Solutions  describe in-states and solutions 

 describe out-states. It follows from the integral transformations (23) and (28) that the solu-
tions  and  are related to the well-known stationary solutions  and  (see 
Gavrilov, Gitman 2016b).
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