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Introduction

Black holes are among the most appealing fields of modern theoretical physics. In 1916 Schwarzschild 
solved the Einstein equation and showed that there is a line at  where all physical quantities are blown 
up. This is called a singularity. All famous black hole models have a singularity which is hidden under the 
event horizon. In 1970, Penrose came up with the cosmic censorship principle (CCP). According to this 
principle, all singularities must be hidden under the event horizon. However, all these models describe 
eternal black holes without mentioning anything about their formation. Therefore, in order to understand 
how a black hole is formed, it is necessary to consider gravitational collapse.

In 1939, Oppenheimer and Snyder (Oppenheimer, Snyder 1939) considered gravitational collapse of 
the pressureless homogeneous matter cloud. They showed that such a collapse results in a black hole. A 
black hole was believed to be the only result of gravitational collapse for a long time. However, later it 
was found that a singularity might be formed earlier than the apparent horizon during gravitational col-
lapse (see Joshi 2007; Goswami, Joshi 2007). An apparent horizon is a marginally trapped surface and a 
boundary of the trapped region. Thus, if it is absent and there is a family of non-spacelike future-direct-
ed geodesics which terminate at the central singularity in the past, then such a singularity is visible and 
is called a naked singularity. If we consider gravitational collapse of the unhomogeneous dust, then the 
result of such a collapse might be a naked singularity. It should be noted that naked singularity is tem-
porary, and in a short period of time it is covered with the apparent horizon, which results in a black 
hole.

Naked singularity formation violates CCP in its original version. However, after 1970 other CCPs 
were formulated and one of them admits naked singularity formation in four-dimensional spacetime 
(for details on all CCPs, see Joshi 2007).

When gravitational collapse is considered, vacuum solutions cannot be considered anymore. We must 
put the energy-momentum tensor (EMT) on the right side of the Einstein equation. The EMT must be 
physically relevant and must satisfy energy conditions: weak, strong and dominant ones (Hawking, Ellis 
1973). Nowadays there are a lot of gravitational collapse models which result in naked singularities (Gos-
wami, Joshi 2007; Vertogradov 2016; 2018; Mkenyeley, Goswami, Maharaj 2014); however, if the EMT 
satisfies all necessary energy conditions, these naked singularities are temporary. Nevertheless, one en-
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ergy condition—the strong one—can be violated. In this case matter distribution is thought to possess 
negative pressure and an eternal naked singularity might be formed (Goswami, Joshi 2007; Vertogradov 
2018). It should be noted that in this case ‘eternal’ means that the singularity is formed during the grav-
itational collapse process and will never be covered with the apparent horizon.

This paper has the following structure. Section II provides definitions of all necessary terms such as 
‘energy condition’, ‘apparent horizon’, ‘expansion’, etc. Section III describes naked singularity formation 
in the general spherical symmetry case. Section IV gives necessary conditions for the naked singularity 
formation in case of generalised Vaidya spacetime. Section V presents the violation of the strong energy 
condition and considers the possibility of eternal naked singularity formation. Section VI is the conclusion. 
Units  are used throughout this paper. Moreover, the “– + + +” signature is used in this  paper.

  

are partial derivatives with respect to coordinate r and time t and , respectively.

Necessary definitions

The energy condition

When gravitational collapse is considered, the EMT is put on the right side of Einstein equations. 
However, the EMT must obey certain conditions since these models should be physically relevant and 
should never have negative mass or negative energy density, etc. Therefore, it is possible to impose con-
ditions that energy density must be positive, or that energy density must be more than pressure (Hawk-
ing, Ellis 1973; Poisson 2004).

The following energy conditions are imposed: the weak, strong and dominant energy conditions.

Weak energy condition. 
Energy density of any matter distribution measured by an observer at any spacetime point must be 

positive or equal to zero.
Let  be four-velocity of an observer; then the weak energy condition can be written as

  (1)

where  is the energy-momentum tensor.
The strong energy condition demands that 

  (2)

where  is the Ricci tensor.
If matter distribution is a perfect fluid, then the condition (2) gives 

  (3)

where  and  are energy density and pressure, respectively.

Dominant energy condition.
Any matter distribution must move along non-spacelike worldlines. For any non-spacelike  

vector  this condition gives 

  (4)

where  stands for the timelike or null vector field. It means that this vector must be a non-spacelike 
one. The condition (4) gives 

  (5)
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For most known matter distributions, all three conditions are valid. However, there are some mod-
els where one of the conditions is violated. For example, the strong energy condition is violated inside 
a regular black hole (Dymnikova 1992; 2002).

The strength of the central singularity

We must understand that singularities which we consider must be genuine and cannot be removed 
by proper coordinate transformation. If a singularity can be removed, then it is weak; if it cannot be 
removed, then it is a strong one. A singularity is called gravitationally strong or simply strong if it destroys 
any object that falls into it by stretching or crushing. If not, such a singularity is called gravitationally 
weak (Nolan 1999).

According to the Tipler’s definition (Tipler 1977), a singularity is gravitationally strong if 

  (6)

where  is an affine parameter and  is a tangent vector to a non-spacelike geodesic.

The apparent horizon

An apparent horizon is a marginally trapped surface (Faraoni 2015) and a border of the trapped region. 
To calculate the apparent horizon (Poisson 2007), it is necessary to take the geodesic congruence and the 
vector  which is tangent to this congruence

  (7)

where ’;’ is a covariant derivative, and  shows the failure of  to be parallel transported along the con-
gruence. If , the  vector is parallel transported along the geodesic.

First of all, the expansion  should be defined. There are two cases:

  (8)

if α = 0, and 

  (9)

if α ≠ 0. Here  is a coefficient which does not have any impact on the apparent horizon definition. A 
surface is called a trapped one if θ < 0 everywhere on this surface. The apparent horizon, as said earlier, 
is a border of the trapped region and can be defined as

  (10)

It follows from (10) that the  parameter (9) does not have any impact on the apparent horizon  
definition.

The general case

The most general spherically symmetric metric in comoving coordinates {t, к, θ, φ} has the following 
form (Joshi 2007):

   (11)

Here

  (12)
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The EMT in the case of a perfect fluid is determined by

  (13)

where P and ρ are pressure and density, respectively, and ui is four-velocity.
In any comoving frame the EMT for the first type of the matter field (i.e. for any physically relevant 

matter such as dust, perfect fluid, scalar fields, etc.) has the form

  (14)

where  and  are radial and tangent pressure components, respectively.
If there is a family of non-spacelike future-directed geodesics which terminate at the central singular-

ity in the past, and if the time of the singularity formation is less than the time of the apparent horizon 
formation, then the result of the collapse is a naked singularity. According to Joshi (2007), the result of 
such a collapse depends on the initial profile data.

The equation of the apparent horizon in case of a general spherically symmetric metric (11) is

  (15)

A radial null geodesic is defined as

  (16)

If the equation (15) cannot be satisfied, then the apparent horizon is absent. And if the condition 

  (17)

is satisfied and the value  is finite, then the singularity at r = 0 and at the time t = 0 is a naked one.
In this case there is a family of non-spacelike future directed geodesics which terminate at the central 

singularity in the past. It means that an external observer can observe processes near this region with 
extremely high energy density.

The temporary naked singularity in generalised Vaidya spacetime

This paper considers gravitational collapse of thin radiating shells (Vertogradov 2016). The first shell 
collapses at the central singularity at r = υ = 0 where M(0, 0) = 0. During the collapse of other shells the 
mass function is growing, and when the last shell collapses, the mass function becomes a well-known 
Schwarzschild mass. This article only considers shell-focusing singularities, while shell-crossing singulari-
ties are gravitationally weak and irrelevant to this study. If there is a family of non-spacelike future-directed 
geodesics which originate at the central singularity in the past, and if the time of the singularity formation 
is less than the time of the apparent horizon formation, then the result of such a gravitational collapse is a 
naked singularity. If there is no such family of geodesics, or the time of the apparent horizon formation is 
less than the time of the singularity formation, then the result is a black hole.

Generalised Vaidya spacetime corresponds to the combination of two matter fields of types I and II 
(where type I is the usual matter and type II goes along null geodesics) which is generally described by 
the equation (Wang, Yu 1999)

 (18)

where M(υ, r) is the mass function depending on coordinates r and υ which correspond to advanced/
retarded time, means 𝜀𝜀 = ±1  ingoing/outgoing radiating thin shells, respectively.
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If we consider gravitational collapse, then 𝜀𝜀 = +1. . With a suitable choice of coordinates, it is possible to 
set 𝜓𝜓(𝑣𝑣, 𝑟𝑟) = 0 . So, equation (18) now can be written as

 (19)

The energy momentum tensor can be written as

  (20)

where the first term corresponds to the matter field of type I, and the other one corresponds to the mat-
ter field type II.

The expression of the energy momentum tensor can be expressed as follows:

  (21)

where P means pressure, ρ means density and L, N mean two null vectors (Wang, Yu 1999).
Strong and weak energy conditions demand the followng:

  (22)

The dominant energy condition imposes the following conditions on the energy momentum tensor:

  (23)

Let us consider the simplest case, when the equation of the state is

  (24)

(The results for the equation of the state 𝑃𝑃 = 𝛽𝛽𝛽𝛽          𝛽𝛽        (0, 13)  where 𝑃𝑃 = 𝛽𝛽𝛽𝛽          𝛽𝛽        (0, 13)  belongs to the interval 𝑃𝑃 = 𝛽𝛽𝛽𝛽          𝛽𝛽        (0, 13)  are the same 
(Vertogradov 2016).

If the equation (21) is applied, the mass function is obtained:

  (25)
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Pressure and density are defined as

  (26)

Strong, weak and dominant energy conditions demand that

  (27)

Moreover, the condition M(0, 0) = 0 demands that

  (28)

The equation of the apparent horizon is

  (29)

Thus, when  is the time of the singularity formation, the equation of the apparent horizon is

  (30)

If D(0) > 0, then r > 0 and the time of the apparent horizon formation is less than the time of the 
singularity formation; in this case, a black hole is a result of gravitational collapse. Thus, naked singular-
ity is only formed when D(0) = 0.

Let us consider if there exists a family of non-spacelike future-directed geodesics which originate at 
the central singularity r = v = 0 in the past. Firstly, it is necessary to substitute the mass function (25) 
into the geodesic equation

  (31)

If the limit is considered at r → 0, v → 0 in (31), then conditions for the mass function, necessary for 
the gravitational collapse to result in a naked singularity, are as follows:

  (32)

where a, b are arbitrary constants.
Thus, when the conditions (32) are satisfied, the collapse results in a naked singularity. Let us con-

sider an explicit example.
Let

  (33)
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The condition D(0) = 0 is satisfied; therefore, it is necessary to consider whether a family of non-
spacelike future-directed geodesics exists. For this purpose, (33) is substituted into (31):

  (34)

Now let us use the definition 𝑥𝑥0 = lim
𝑟𝑟→0,𝑣𝑣→0

𝑑𝑑𝑣𝑣
𝑑𝑑𝑟𝑟   in (34):

  (35)

It should be noted that for a family of non-spacelike future-directed geodesics to exist, it is necessary 
and sufficient that one root of the equation (35) should be positive. It is possible if

  (36)

If the condition (36) is satisfied, then the singularity is naked.

The negative pressure case in generalised Vaidya spacetime

In this case the equation of the state 𝑃𝑃 = −12𝜌𝜌  is considered. Then the mass function is given by

  (37)

In this model the strong energy condition is violated, because P < 0. Weak and dominant energy 
conditions demand that

  (38)

Since M(0, 0) = 0, it follows that c(0) = 0.
Substituting this solution into the equation of the apparent horizon, we find

  (39)

When c(0) = 0 and d(0) = 0, the apparent horizon is absent. Solving this equation with respect to r 
gives

  (40)

It follows that the apparent horizon is absent when  (𝑣𝑣)𝑑𝑑(𝑣𝑣) > 1
16       𝑣𝑣 = 0        𝑐𝑐(𝑣𝑣)𝑑𝑑(𝑣𝑣) > 1

16 . Thus, the naked singularity forma-
tion is present when  (𝑣𝑣)𝑑𝑑(𝑣𝑣) > 1

16       𝑣𝑣 = 0        𝑐𝑐(𝑣𝑣)𝑑𝑑(𝑣𝑣) > 1
16 , when the apparent horizon appears, and later when  (𝑣𝑣)𝑑𝑑(𝑣𝑣) > 1

16       𝑣𝑣 = 0        𝑐𝑐(𝑣𝑣)𝑑𝑑(𝑣𝑣) > 1
16 ; then the 

apparent horizon disappears again.
The next question under consideration is the existence of non-spacelike future-directed geodesics which 

terminate at the singularity in the past. For example, let us consider the radial null geodesics equation
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  (41)

Let us denote lim
𝑟𝑟→0,𝑣𝑣→0

𝑑𝑑𝑣𝑣
𝑑𝑑𝑟𝑟 = 𝑥𝑥0      𝑑𝑑(𝑣𝑣) = 𝜉𝜉𝑣𝑣      𝑐𝑐(𝑣𝑣) = 𝜆𝜆𝑣𝑣      𝜆𝜆 , 𝜉𝜉  , then we can substitute lim

𝑟𝑟→0,𝑣𝑣→0
𝑑𝑑𝑣𝑣
𝑑𝑑𝑟𝑟 = 𝑥𝑥0      𝑑𝑑(𝑣𝑣) = 𝜉𝜉𝑣𝑣      𝑐𝑐(𝑣𝑣) = 𝜆𝜆𝑣𝑣      𝜆𝜆 , 𝜉𝜉   and lim

𝑟𝑟→0,𝑣𝑣→0
𝑑𝑑𝑣𝑣
𝑑𝑑𝑟𝑟 = 𝑥𝑥0      𝑑𝑑(𝑣𝑣) = 𝜉𝜉𝑣𝑣      𝑐𝑐(𝑣𝑣) = 𝜆𝜆𝑣𝑣      𝜆𝜆 , 𝜉𝜉   (where lim

𝑟𝑟→0,𝑣𝑣→0
𝑑𝑑𝑣𝑣
𝑑𝑑𝑟𝑟 = 𝑥𝑥0      𝑑𝑑(𝑣𝑣) = 𝜉𝜉𝑣𝑣      𝑐𝑐(𝑣𝑣) = 𝜆𝜆𝑣𝑣      𝜆𝜆 , 𝜉𝜉   are real 

positive constants) in the geodesics equation and rewrite it as

  (42)

The family of non-spacelike future-directed geodesics exists if there exists a positive root for the 
equation above. x0+ is positive, but λ should be limited as

  (43)

The result of such a collapse might be a naked singularity.
At the late stage of v, expression (40) has two positive roots. Thus, there are three regions:

• region I, where 
• region II, where 
• region III, where 

Let us consider the expansion θ:

  (44)

where e-γ has no impact on the sign of θ.
As it follows from (44):

  (45)

This result is similar to Schwarzschild-de Sitter-Kottler spacetime (Faraoni 2015), but with the equation 
of the state 𝑃𝑃 = −12𝜌𝜌 . It is clear that region I is a black hole solution with a singularity in its center. If an 
observer is located in region II, then he can not get information from regions I and III.

In this case the result of the gravitational collapse might be a naked singularity; however, it is temporary 
and in a very short period of time it is covered with the apparent horizon. However, this is a white hole 
apparent horizon, because it follows from (44) that θ > 0 at 0 < r < r2. In this case, r1 < 0. Thus, there 
is a region of spacetime where geodesics cannot get into region 0 < r < r2 from region r2 < r < +∞. This 
white hole is shrinking. At the late stage of v the expression (44) has two positive roots. Then two appar-
ent horizons merge, and the collapse results in a singularity, which is similar to the singularity of the 
future in Friedman model.

A naked singularity is eternal if there is a family of non-spacelike future-directed geodesics which 
terminate at the central singularity in the past, the apparent horizon never appears and θ is positive 
everywhere.

Let us consider the case of the negative pressure when θ is always positive. The equation of the state 
in this case is P = –αρ, where 1 ≤ α < 0.  cannot be more than one due to energy conditions which de-
mand ρ ≥ P ≥ 0. The mass function in this case is defined as

  (46)
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The expansion in this case is given by

  (47)

Here e–γ has no impact on the sign of θ.
Then θ is restricted to positive numbers: 

  (48)

It follows from (48) that this condition can only be satisfied if c(v) ≡ 0. Now α is restrictid to α < 1, 
because if α = 1, then there is no singularity. The final equation is

  (49)

It also follows from (49) that there is no apparent horizon, because the condition to the apparent 
horizon formation is θ = 0, but θ is restricted to θ > 0. Moreover, (49) shows that d(v) must be very 
small and, therefore, the pressure must be very small, too, because

In order to prove that there is a family of non-spacelike future-directed geodesics which terminate 
at the central singularity in the past, it is necessary to consider a null radial geodesic which is given 
by

  (50)
This family exists if

  (51)

However, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑       1 − 2𝑑𝑑(𝑣𝑣)𝑟𝑟2𝛼𝛼   is always positive, because 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑       1 − 2𝑑𝑑(𝑣𝑣)𝑟𝑟2𝛼𝛼   must be positive due to the condition θ > 0. 

Thus, all three conditions are satisfied and, according to them, the result of such a collapse is an eternal 
naked singularity.

Let us look at the equation (49). It has a solution

  (52)

This solution must be matched to the exterior Schwarzschild one. Let rm be a boundary of two spa-
cetimes. Then there are two cases: 

    1. raah < rm, 
    2. raah > rm. 

In the first case the result of the gravitational collapse is a white hole, because θ is positive at 0 ≤ r < rah, 
and there is a family of non-spacelike future-directed geodesics which terminate at the central singular-
ity in the past. However, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑       1 − 2𝑑𝑑(𝑣𝑣)𝑟𝑟2𝛼𝛼   is always positive inside the white hole apparent horizon, and there is no 
geodesic which can get into the white hole from the region outside of the apparent horizon. But in this 
case it takes endless time to get to the exterior observer from the singularity.

In case II solutions are matched at rm, which is less than rah, and it takes a finite time to get to the 
exterior observer from the central singularity. Now let us look at the expression of pressure which is 
given by
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  (53)

It follows from equations (49) and (53) that the less the pressure is, the more rah is. It means that an 
eternal naked singularity can be formed if the pressure is small enough.

This paper does not consider the question about the strength of the central singularity, but all con-
sidered singularities are gravitationally strong (see, for example, Vertogradov 2016; 2018).

Conclusion
This paper briefly explained the naked singularity phenomenon. It identified conditions when a naked 

singularity might be formed in the case of the most general spherically symmetric metric. Moreover, it 
presented two explicit examples of the naked singularity formation. This paper considered only spheri-
cally symmetric objects. There has been no analytical model for the gravitational collapse of a rotating 
object proposed so far.
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