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Abstract. We consider a singular -potential supported on two parallel lines in R2 as a model of two interacting 
macromolecules. The intensity of the potential is constant, but each line contains a finite segment with  
a variation. Using variational approach, we study continuous and discrete spectra and estimate the gap 
between the eigenvalue and the continuous spectrum as a function of shift between the line segments.  
The existence of bound states for the system is proven by test function with separated variables. 
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Bound states for two delta potentials supported 
on parallel lines on the plane

A. S. Bagmutov1, I. Y. Popov1

1 ITMO University, 49 Kronverkskii Ave., Saint Petersburg 197101, Russia

Introduction

A great deal of recent research has focused on potentials supported on line in R3 or R2. Apart from 
the mathematical interest, the problem attracts researches due to its physical application as a potential 
can be considered a model of a long molecule. There is a series of works exploring the potentials sup-
ported on sets of zero measure (see, e. g.: Behrndt, Frank et al. 2017; Brasche, Teta 1992; Brasche et al. 
1994; Exner, Ichinose 2001; Exner, Jex 2013; Exner, Kondej 2002; 2004; 2005; 2015; Exner, Pankrashkin 
2014; Exner, Vugalter 2016; Exner, Yoshitomi 2002; Posilicano 2001; 2004). The background of the 
model is the theory of self-adjoint extensions of symmetric operators. An analogous model was also 
developed for narrow slits in the surfaces (Popov 1992a; 1993) and for potentials supported on hyper-
surfaces (Behrndt et al. 2016; 2017a; Exner et al. 2018). In the present paper we deal with 2D strip which 
boundaries are formed by potentials supported on lines. These potentials look like semitransparent 
boundaries (see, e. g., Bagmutov, Popov 2020; Popov 1992b; Vorobiev et al. 2020). The potentials are 
assumed to be negative (i. e., attractive, having a local perturbation and identical at each side of the strip 
but having some shift along the strip at one line in respect to the second line (Fig. 1). We prove the ex-
istence of eigenvalue caused by the local perturbation of the potentials and look after its behaviour if the 
shift of the perturbation changes. 
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The result has a biophysical character. It is related to molecule coupling, e. g., viruses coupling with 
cells or coupling of two DNA chains. Roughly speaking, the process looks as follows. One molecule 
recognises some label at the second molecule, keeps close to this position and forms a bond. In our 
simple model, molecules are represented by lines with potentials, a “label” is a perturbation of the 
potentials. A reasonable question begs itself: which factors can assist molecules to keep a small distance 
in proper position? If one considers electron in this system of two attractive potentials, there is a bound 
state due to its local perturbations. This state assists to keep molecules close. In real system this state 
can be destroyed by external perturbations (e. g., thermal vibration). The state is more stable if there is 
sufficient gap between the eigenvalue and the lower bound of the continuous spectrum. In our model, 
we show that an increase in the shift leads to a decrease in the gap, i. e., the most stable position is in the 
case of the shift absence. It means that the electron bound state is a factor assisting molecules to be  
in proper position.

Let us consider a system shown in Fig. 1. It consists of two infinitely-stretching parallel lines  
at a distance L, on a 2D plane. Attractive delta-potential of a constant intensity –u1 < 0 is located along 
the lines, except for a region of finite width W on each line, where intensity changes to –u2, such as –u2  < 
–u1. Let us denote by h < W a distance to which a region W on one line is shifted relative to the second 
line. We use the atomic system of units in which one has m = 0.5, ℏ = 1. Correspondingly, the Hamiltonian 
of the system is the Laplacian H ̂ψ = –Δψ, with the domain consisting of continuous functions ψ ∈ L2 
(R) that satisfy the following conditions on the lines:

  (1)

where yl = 0 or L, and αx = u2 is inside the perturbed region of the line W and αx = u1, outside. 

Continuous spectrum

Let us consider the continuous spectrum of the operator. As the system is a local perturbation of the 
corresponding one with two constant potentials –α = –u1 supported on two parallel lines, the continuous 
spectrum is the same as without this perturbation. In case of two parallel lines (y = 0, y = L) with constant 
potentials, separation of variables can be made, i. e, one can consider the wave function in the form  
ψ(x,y) = χ(x) ζ(y). Correspondingly, the lower bound of the continuous spectrum for the Laplacian  with 
conditions (1) on the lines is given by the lowest eigenvalue for the transversal problem  
(for function ζ(y)). To find it, we consider the operator  on R with the following conditions at two 
points:

Fig. 1. System of two parallel lines with delta-potentials of varying intensity on them
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  (2)

Theorem 1. The lower bound of the continuous spectrum of the operator  is , where κj are 
real roots of the spectral equation:

  (3)

Proof. Differential equation for transversal eigenfunction ζ(y) of  corresponding to eigenvalue 

k2 at each part of is as follows: . Taking its solutions e±iky and satisfying conditions (2), one 

obtains (3), where κ = ik ∈ R–.
To have an eigenvalue, one needs a decay at infinity, i. e., κ < 0. Keeping in mind that the function  

in the left-hand side of (3) takes minimal value –1 at , one concludes that there is a root κ1 of (3), 
.

Remark. It is known that in the case of a single line, the lower bound of the continuous spectrum  

is . In case of two lines with conditions (2), the limit of the threshold determined by (3) tends to –α2   

when L → 0. It corresponds to potential –2α at single line. Hence, for conditions (2), one has a summation 

of the two-line potentials.

Test functions

To find the discrete spectrum, we use a variational technique. We consider the ratio

 

which minimal value is the minimal eigenvalue of the operator . If a test function ψ is such that  
the value of the ratio is smaller than the lower bound of the continuous spectrum of , then there  
is an eigenvalue of  below the continuous spectrum and the value of the ratio gives one an upper esti-
mation for this eigenvalue. 

We will construct test functions which satisfy the condition (1) on the lines, but are not continuous 
along the X axis. However, it can be approximated with arbitrary accuracy by the functions from the 
operator domain. Specifically, we assume ψ(x,y) = χ(x)ζx(y), where ζx(y) are five eigenfunctions of , 
satisfying condition (2), one for each vertical strip with unique delta potentials on lines (denoted by Ro-
man numerals in Fig. 1). 

First, let us consider a transversal part ζx(y). There are 5 of them, with three unique sets of conditions 
(u1,u1), (u1,u2), (u2,u2). Let each of a1 and a2, a1 ≤ a2 take value of u1 or u2. The problem sometimes referred 
to as double delta-function potential in 1D. For the , there are two solutions. When con-
tinually changing delta-function intensities to make them equal, one of them transforms into a sym-
metrical solution, and the other into an asymmetrical one. We will refer to them as solutions of sym-
metrical and asymmetrical types respectively. The restrictions on transversal energy levels  
are as follows:
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Now, let us consider a longitudinal component χ(x) for the test function. The transversal variants 
create five regions with different energy  each. These energies can be converted into a step-like potential 
for the longitudinal component constant in each region. We will consider two specific cases, corresponding 
to all transversal functions being either of symmetric or asymmetric types, which produces symmetric 
potentials with 3 different levels: a variation on square well potential, with additional step, hereafter 
referred to as step-well potential (see the example of potential, produced by symmetric type ζx(y),  
Fig. 2). Let V1, V2, V3, denote constant levels of a potential, from the lowest to the highest. The solutions 
for V1 < E< V2 and V2 < E < V3, which we refer to as bottom and top ones respectively, satisfy different 
restrictions on energy levels. Let  and

  (4)

The restrictions for energies of symmetric and asymmetric solutions are as follows:

   (5)

Let us denote the right-hand side of (5), as K(E). These equations cover the case of E < V2 with complex k2. 
However, it might be convenient to use other expression for K(E) with , which eliminates 
complex numbers:

 

Fig. 2. Longitudinal component of the constructed function for the symmetric type ζx(y).  
Fixed values: W = 3, V1  = 0, V2  = 18, V3 = 20. The plot shows dependence of energy levels on shift h. The left 

part shows a specific step-well potential, for h = 1, with energy levels and corresponding eigenfunctions.
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Existence of bound states

The constructed functions can be used to create an upper bound on the discrete spectrum of .
Theorem 2. The step-well potential (see Fig.2) always has at least one discrete eigenvalue below the 

essential spectrum σess.
Proof. We will prove that there is an interval where T(E) – K(E) is continuous and takes values  

of different sign at the borders , where T(E) (determined as (4)) and K(E) are the left hand side and the 
right hand side of (5). Note, that for the edge cases V2 = V1, V2 = V3, h = 0 or h = W, the problem turns 
into a square well potential situation, for which the existence of an eigenvalue is proven.

First, let us note that T(V1) = 0 and K(+0) = +∞. The only discontinuities for the functions are the 
vertical asymptotes. Let us denote the smallest vertical asymptotes for T and K as AT and AK.  
Then T(AT – 0) = +∞, K(AK – 0) = –∞, and therefore, if min (AT, AK ) ≤ V3, then the interval (0, min  
(AT, AK )) is the required one.

Now, let us consider the case min (AT, AK ) ≤ V3. Fix some values of W and V2. Here, T(V3) > 0, let us 
prove that K(V3 ) ≤ 0 for all relevant h. The equation for the asymptotes of K(E) can be written as

 

which shows that as h increases, A_K monotonically decreases, thus K(E) continuous on (V1, V3 ), 
only for h from 0 to the point at which AK = V3. The function  is a monotonically 
decreasing function and when h = 0, one has K(V3 ) = 0. That proves K(V3 ) ≤ 0 , when AK > V3, and, 
therefore, interval (V1, V3) is the necessary one.

Corollary 1. The main operator  has at least one bound state.

Proof. The essential spectrum of an operator is . The constructed function satisfies 

, and can be approximated to an arbitrary degree by the functions from the operator domain. 

Therefore, the value E from Theorem 2 is the upper bound for the discrete spectrum of .

Results
Now let us consider the constructed function energy levels as functions of h. As V2 changes, note, 

that edge cases V2 = V1 and V2 = V3, produce square well potentials of widths W + h and W – h, which, 
with an increase of h, get wider and narrower respectively. With V2 fixed, an increase of h from 0 to W, 
transforms a narrow well (W, V3), into a wide well (2W, V2), while continuously changing their energy 
levels.

As has been described above, the constructed functions, given large enough L, allow us to choose 
one of two transversal eigenvalues:  and  for each region, and while regions with a1 = a2 
produce close values, regions with different intensities, which correspond to V2, have a large gap between 
them. The choice between two values in each region corresponds to ψ of symmetric and asymmetric 
types. Using the results, we can conclude that their energy levels transform in different ways. Considering 
a symmetric type, we can see from Fig. 2 that the lowest eigenvalue is monotonically rising, until it 
escapes the strip below V2 and reaches the lowest level of the wide square well (2W, V2). As for real 
systems, a larger gap between the eigenvalue and σess ensures larger stability of the eigenstate in respect 
to perturbations. This means that the bound states with that behavior are more stable for small h.

As we mentioned in the Introduction, the considered system can be treated as a rough model for the 
description of some features of line molecules (e. g., DNA-like or protein-like) interactions. Particularly, 
it can be useful for understanding of the first stage of interaction between a virus and an organism 
molecule (recognition of a “label” and fixation near the molecule), see, e. g., (Li 2016; Shang et al. 2020).
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