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Abstract. The article reports the results of a theoretical study of superradiance of three-level optical systems 
with a doublet in the ground state (Λ-scheme) placed in a high-quality cavity. Hyperbolic chaos and 
unpredictable dynamic movements of the system appear on the surface of a multidimensional torus without 
dissipative losses in the conditions of superradiance without population inversion. The study resulted in the 
development of conservation laws to reduce the dimension of the phase space. An analytical result is obtained 
for the special case of a degenerate doublet.
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Introduction

It is well-known that the necessary condition for Dicke superradiance (SR) (Dicke 1954) is the pres-
ence of the initial population inversion of transitions levels (Andreev et al. 1980; 1993; Benedict et al. 
1996; Bonifacio et al. 1971; Bonifacio, Lugiato 1975; Gross, Haroche 1982; Kalachev, Samartsev 2003; 
MacGillivray, Feld 1976; 1981; Rehler, Eberly 1971; Sokolov, Trifonov 1974; Zheleznyakov et al. 1989). 
Considering our case with three-level Λ-emitters, this restriction is not mandatory. Superradiance is 
possible even when the initial upper-level population is less than the total population of the lower dou-
blet—SR without population inversion (Carlson et al. 1980; Harris 1989; Kocharovskaya 1997; Kocha-
rovskaya, Khanin 1988; Kocharovskaya, Mandel 1990; Malikov, Trifonov 1984; Malyshev et al. 1998; 
2000; 2003; Ryzhov et al. 2012; 2017; Scully 1992; Yuan, Svidzinsky 2012; Zaitsev et al. 1999). The essence 
of the effect is as follows. If one prepares the initial state of the lower doublet as a coherent superposi-
tion, transition to which from the upper state is forbidden, then the orthogonal to the initial superposi-
tion, transition to which is allowed, appears to be unpopulated. In this case, the transition from the 
upper level to this superposition state appears to be inverted at an arbitrarily small population of the 
upper level. The initial coherent state of the doublet can be created by a short low-frequency π/2-pulse 
(Malyshev et al. 1998; 2003; Ryzhov et al. 2012; 2017; Zaitsev et al. 1999). Crystals activated by rare earth 
ions, such as LaF3:Pr3+, Y2SiO5:Pr3+, Y2SiO5:Eu3+, Y2SiO5:Er3+, etc., are real objects where the conditions 
for observing SR regimes without inversion can be achieved. At cryogenic temperatures, the conditions 
of the 4f orbitals of these ions are characterized by a high degree of optical coherence, less than kHz, and 
very low heterogeneous expansion from MHz to GHz (Ryzhov, Vasil’ev, Kosova et al. 2017). An addi-
tional level close to the ground one is a solution to the problem in question. 

The article focuses on analytical regularities of the nonlinear dynamics of superradiance of an en-
semble of three-level Λ-atoms which are spatially homogeneously and isotropically distributed in  
a high-Q cyclic cavity. The model of SR proposed in this work is conservative. There are no relaxation 
losses of SR. The time dynamics of the model is considered in terms of the semiclassical approach:  
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the ensemble of three-level emitters is described by equations for the density matrix ρmn (m, n = 1, 2, 3), 
while the electromagnetic field is described by Maxwell’s equations. The conservation of the system 
results in integrals of motion that considerably reduce the dimension of the phase space of the examined 
model: (R11 →R5). For the degenerate doublet, we found mapping that reduces the problem of the three-
level SR to a nonlinear oscillator with cubic nonlinearity (R5 →R2).

Model and formalism

We consider an ensemble of three-level atoms with the Λ-scheme of operation transitions. The atoms 
are homogeneously distributed along one of the arms of a high-Q cyclic cavity (Fig. 1). 

Fig. 1. A diagram of a unidirectional ring cavity. The active medium of Λ-emitters is gray. An inserted picture 
shows energy-level diagram of Λ-emitters. The number of the level (n = 1,2,3) corresponds to the state of the 
emitter with energy En. Solid and dashed arrows indicate, respectively, the allowed and forbidden transitions  

between the energy levels of the emitter, with the frequencies of the corresponding transitions ω21, ω31, and ω32, 
and the transition dipole moments d31 and d32 (d21 = 0).

In addition, all vectors (transition dipole moments and polarization of the field) are assumed to be 
directed identically and perpendicularly to the axis of the system. The evolution of the system then obeys 
the following (one-dimensional) system of Maxwell—Bloch equations:

  (1)
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where, ρnm are the elements of the density matrix of the three-level atom at the point with coordinate 
x at moment of time t (m, n = 123); d31 and d32 are the dipole moments of the corresponding transitions, 
which, without loss of generality, can be considered to be real-valued and positive; ω31 and ω31 are the 
frequencies of optical transitions between the upper level 3 and the doublet sublevels 1 and 2; ω21 is the 
frequency of the transition between the sublevels of the doublet; P = N (d31 ρ31 + d32 ρ32 + c.c.) is the po-
larization of the medium; N is the concentration of atoms; с is the speed of light in vacuum; E is the 
electric field strength. 

The relaxation of the populations and polarization (homogeneous and related to inhomogeneous 
broadening) is not taken into account: we assume that the SR time is considerably shorter than all relax-
ation times and consider the dynamics of superradiance on this scale. In addition, we neglect the decay 
of the field due to cavity losses. Frequency ω21  of the doublet splitting is assumed to be much smaller 
than frequencies ω31 and ω32 of the optical transitions. We also assume that the spectrum of SR and the 
value of doublet splitting ω21 do not exceed the spacing between cavity modes, i. e., we restrict ourselves 
to the single-mode approximation.

We will seek the solution to the system of equations (1) in the form

  (2)

where k = ω/c, while the field amplitude A and off-diagonal elements R31 and R32 of the density matrix 
(in what follows, they will be referred to as the high-frequency coherences) are functions that very 
slowly change on a scale of the optical period 2 π/ω and the radiation wavelength λ = 2 π/k — the ap-
proximation of slowly varying amplitudes (SVA). Note that an analogous assumption with respect to 
low-frequency coherence ρ21 (on a scale of 2 π/ω) is not used. It is natural to assume that passage time 
L/c (L is the cavity length) is much shorter than characteristic times of the problem, i. e., during one 
round trip of the light in the cavity, the state of the medium changes insignificantly. In this case,  
the retardation can be neglected. Then the field at the input into the active medium (by virtue of a high-
quality factor of the cavity) is equal to the field at its output, which also justifies the use of the mean-field 
approximation. And, finally, let us assume that the |3〉 ↔ |1〉 and |3〉 ↔ |2〉 transition dipole moments are 
identical (d31 = d32 = d). This is the approximation that is not principal for the problem under consideration.

Taking a standard path from the system of equations (1) to a similar system for SVA, we obtain

  (3а)

  (3b)

  (3c)

  (3d)

  (3e)

  (3f )

here, dots denote the derivatives with respect to the dimensionless time τ = tΩ, where  
is the constant that determines the time scale (Ω-1); δ=ω21/Ω is the dimensionless splitting frequency  
of the doublet; and E=-idA/(ℏΩ) is the dimensionless amplitude of the electric field strength. For sim-
plicity, eigenfrequency ω = (ω31 + ω32)/2 of the cavity is considered to be centered between frequencies 
ω31 and ω32.

This system of equations has the following integrals of motion:

  (4a)
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  (4b)

  (4c)

(4a) shows the law of conservation of the excitation energy of the system, (4b) and (4c) represent the 
normalization conditions for the density matrix and its square respectively. The presence of integrals of 
motion makes it possible to considerably simplify the analysis of the dynamics of the three-level SR.

Initial conditions, symmetry, and simplification of the model

The presence of a doublet in the ground state introduces new effects into the response of the system. 
They are generated by the competition between the transitions |3〉 ↔ |1〉. In connection with this, to 
investigate the kinetics of the three-level SR, we will choose such initial conditions that will ensure most 
effective interaction between the parts of the system “cavity + atoms + field”, i. e., at any initial population 
of the upper state and with a minimal delay of the SR pulse. In this regard, let us focus on equations (3d) 
and (3e) for the high-frequency coherences R31 and R32. They contain terms that are proportional to low-
frequency coherence ρ21. In this case, if ρ21 (0) ≠ 0, the evolution of initial fluctuations of R31 will depend 
on phase ρ21 (0). At positive values of ρ21 (0) these fluctuations will decrease; however, if the values of ρ21 
(0) are negative, these fluctuations, on the contrary, will increase avalanche-like, leading to superradi-
ance. Notably, this possibility arises at any difference of the populations in channels 3 ↔ 1 and 3 ↔ 2 
due to the transformation of the low-frequency coherence ρ21 (0) into high-frequency coherences R31 
and R32. The latter effect is explicitly reflected in the integral of motion (4c). The analysis of superradi-
ance of this Λ-system is significantly simplified upon passage to a new basis  

 (Malyshev et al. 1998; Ryzhov et al. 2012; 2017; Zaitsev et al. 1999). In this case, the 
elements of the density matrix are transformed in accordance with the following relations:

  (5)

where ρ++ and ρ–– are the populations of the active and passive states respectively; ρ++ is the low-
frequency coherence; and R32 and R32 are the high-frequency coherences of the corresponding optical 
channels.

It can be seen from the expression for population ρ++ of the active state presented in the relations (5) 
that for the three-level SR to take place, the presence of an inversion population in active channel  
|3〉 ↔ |+〉 is necessary, i. e., at the initial moment of time, inequality ρ33 (0) > ρ++ (0) should be implement. 
In the ideal case, in which the population of the active state is zero, ρ++(0) = ρ11(0) + ρ22(0) + 2Re[ρ21(0)] = 0, 
the following conditions should be met: 

  (6)

where ρ22 (0) = α and 0 < α ≤1. In what follows, we will assume that the lower doublet is prepared in 
a maximally coherent state if conditions (6) are met at the initial moment of time. We emphasize again 
that, under these starting conditions, superradiance can occur at any initial population ρ33 (0) of the 
upper state, even if there is no inversion population on the whole, when the total initial population of 
the lower doublet exceeds the initial population of the upper level, ρ11 (0) + ρ22 (0) > ρ33 (0).
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If the initial electric field strength is zero,

  (7)

for superradiance to arise, it suffices to set small seed values of the high-frequency coherences, e. g.:

 , (8)

where, without loss of generality, it is assumed that Im [R31 (0)] = Im [R32 (0)] = 0, while the value  
of R0   1. We are not interested in the fluctuations of SR; therefore, initial values R31 (0) and R32 (0) are 
specified as determinate parameters, which corresponds to the conditions of the induced SR (Carlson 
et al. 1980; Malikov, Trifonov 1984).

The system of differential equations (3) with initial conditions (6)–(8) was solved numerically.  
The following two controlling parameters varied: the initial population ρ33 (0) = α of the upper level and 
the splitting frequency δ of the doublet. This returned a number of interesting regularities of the time 
dynamics of the amplitudes of the electric field of SR and elements of the density matrix: Re[E(τ)] ≠ 0, 
Im[E(τ)] = 0; the real parts of high-frequency coherences Re[R31(τ)] and Re[R32 (τ)] show a similar be-
havior, whereas their imaginary parts Im[R31(τ)] and Im[R32 (τ)] exhibit an antiphase behavior. In accor-
dance with this, the squares of their moduli, |R31 |

2 = |R32 |
2, evolve identically. The dynamics of popula-

tions ρ11(τ) and ρ22(τ) are identical and repeat the dynamics of superradiance field intensity |E|2 (Ryzhov 
et al. 2017). This makes it possible to considerably simplify the mathematical model of the problem 
under consideration.

By introducing the notation

  (9a)

  (9b)

  (9c)

we can transform the system of differential equations (3) into the following system:

  (10a)

  (10b)

  (10с)

  (10d)

  (10e)

Therefore, the relations (9) implement the reduction of our model from the complex domain to the 
real one. As a consequence, initial phase space R11 (3) of the model is completely mapped into R5 (10).  
In addition, taking into account (4b) and relations (9), integral of motion (4c) takes the form

  (11)
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It is important to note that this law of conservation restricts the domain of existence of phase trajec-
tories of the system and determines a closed hypersurface in the phase space (ϵ, ξ, ζ, η and χ) outside  
of which solutions of the system of equations (10) do not exist at any values of parameters α and δ.  
This makes it possible to characterise the process of SR as a process that is stable in the sense of Lagrange 
(Kuznetsov 2001). Topological specific features of hypersurface (11) depend on the sign of constant γ. 
First, , i. e., at γ > 0, this is a five-dimensional “dumbbell” with symmetry axis  . Second, if i. e., 
γ > 0, the hyper-surface is a five-dimensional ellipsoid. In the first variant, in the phase space of the sys-
tem (under the condition α 1/3), there is hyperbolic chaos related with unpredictable abrupt transitions 
of the representing points between the family of torus lying in different cavities of “dumbbells”.  
The movement of the phase space takes place on the surface of those tori. In the second case (α → 0), 
hyperbolic chaos is also present, but the family of tori already lying in the elliptical phase space intersects 
themselves in many ways, creating conditions that Puankare defined as a homoclinic structure (Puank-
are 1972; Ryzhov et al. 2017) of dynamic chaos.

Degenerate doublet
Let us consider a particular case of a degenerate doublet (δ = 0). In this limit, the system of differen-

tial equations (10) is considerably simplified and takes the form

  (12a)

  (12b)

  (12c)

This system of equations has integrals of motion. First, Eq. (12a) along with the initial conditions  
ϵ (0) = 0 and η (0) = − (1−α)/2 yield the first integral of motion:

  (13)

Second, Eq. (12b) and the initial conditions χ(0) = ζ(0) = 0 yield the second integral of motion: χ2 + 2 
ζ2 = 0, which means that functions χ(τ) and ζ(τ), which are defined in the real domain, remain unchanged 
and equal to zero within the entire SR process: χ(τ) = ζ(τ) = 0, τ ≥ 0. Then, expressing functional depen-
dence η(ϵ) from (13) via ϵ2 and substituting it into (12c), we obtain

  (14a)

  (14b)

Eliminating variable ξ from (14), we arrive at the following closed equation for the field ϵ (15)

  (15)

which represents the Duffing equation (Duffing 1918) for an oscillator with a cubic nonlinearity 
without friction and external driving force. Eq. (15) yields the third integral of motion:

  (16)

the physical meaning of which is that it corresponds to the total energy of the oscillator (superradi-
ance field), where, taking into account the initial conditions ϵ(0) = 0 and ξ(0) = ±R_0 ≠ 0, the value of the 
total energy is  (R0 ≠ 0), while the function V(ϵ) = ϵ4  – αϵ2 can be interpreted as a potential 
energy of SR. The relation between the signs in front of the linear and nonlinear terms in (15) charac-
terises the SR field as that of a stable oscillation process in double-humped potential V(ϵ) with infinite 
walls, which has three singular points in the phase space :  are the points of a 
stable equilibrium of the centre type (minima of the potential V(ϵ)); and O(0,0) is the point of an un-
stable equilibrium of the saddle type (maximum of the potential V(ϵ)).
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In the general case, ξ(0)=R0 ≠ 0, the value of total energy e (16) is always positive,  Conse-
quently, the oscillation process of superradiance is always supernonlinear. In this case, Eq. (16) will have 
an exact solution. In terms of the elliptic functions, it can be obtained by applying the following substi-
tution:

   

Then,

  (17)

where am[τ’; m] is the amplitude of Jacobi functions; cn[τ’; m]is the elliptic cosine; τ’ = ϕτ – τd, where 
τd is the delay time of the SR pulse (initial stage of SR); K(m) is the complete elliptic integral of the first 
kind; and T is the period of oscillations of the electric field strength. In this case, the physical picture  
of superradiance is rather transparent. From Eq. (14a), we have . If ξ(0) = R0,  
then  and the field of superradiance will increase  in the time interval  
0 ≤ τ < T/4 with delay τd; after that, the field will decrease within the interval of the same length, initiat-
ing a superradiance pulse. Upon the reverse motion, the system emits an antiphase pulse, and this pro-
cess is periodically reproduced, since the system is conservative. If ξ(0) = –R0 and 
the field of superradiance has a phase shift by T/2 = π.

Non-degenerate doublet

Eq. (3) has a numerical solution to study the dynamics of SR. For simplicity, the dipole moments of 
optical transitions were assumed to be equal: d31 = d32

 = 1. Natural frequency of the resonator was chosen 
as the average between the frequencies of the high-frequency channels ω = (ω31 + ω32)/2.

The calculations were carried out under the following initial conditions: ρ11 (0) = ρ22 (0) = 0.4, ρ33 (0) = 0.2, 
ρ21 (0) = –0.4, R31 (0) = R32 (0) = 10–8, E(0) = 0. We can observe that there is no population inversion  
in the optical channels. At the same time, the inversion between the upper and the active state is 0.2. 
Non-zero values of R31(0) and R32(0) are required to initiate SR. The periodical regime of SR is observed 
without splitting doublet condition (see Fig. 2a) described by nonlinear equation (15) with cubic non-
linearity which was previously discussed. The splitting of the lower doublet ω21 ≠ 0 leads to the appear-
ance of temporal modulation of the SR signals (Figs. 2b, 2c). This is due to the fact that with a nonzero 
splitting of the lower doublet, the states |+〉 and |–〉 are not stationary and, over time, the active state is 
periodically transformed into a passive one. In addition, a small change in the parameter of doublet 
splitting δ = 0.05 ↔ δ = 0.1 results in a complete change of the SR generation conditions. The transfor-
mation of an active state into a passive one leads to hyperbolic chaos in the system or the chaos of col-
lapsing tori. Figs. 2b, 2c show variants of hyperbolic chaos. The time and amplitude characteristics  
of finding the system on the surface of one torus can vary unpredictably from those on another torus.
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Fig. 2. Dynamics of SR without inversion of different values of the doublet splitting ω21

Conclusions

For multilevel systems, in particular, for systems with the Λ-scheme of operating transitions, we 
showed that, at any population of the upper level, even without the inversion population on the whole, 
it is possible to initiate the generation of an SR pulse. The analysis of the new collective basis of the 
doublet state resulted in the development of conservation laws, which made it possible to considerably 
reduce the dimension of the phase space of the examined model (R11 →R5 →R2) and to realise conversion 
of the model from the complex to the real domain. We show that the system is marked by hyperbolic 
chaos.
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