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Abstract. In this paper, the nonlinear and chaotic responses of bulk antiferroelectrics are elaborated 
phenomenologically and numerically. The first ordered phase of bulk antiferroelectrics is formulated by 
applying calculus of variations to Landau free energy density expansions of bulk antiferroelectrics.  
With applied time-dependent electric field, the antiferroelectrics dynamic responses are obtained by 
Landau–Khalatnikov equation of motion. The resulting dynamical equations are two nonlinearly-coupled 
second order differential equations corresponding to two inter-penetrating sub-lattices of antiferroelectrics, 
and these are solved numerically using forth-order Runge–Kutta methods and ammonium dihydrogen 
phosphate parameters in its first ordered phase. These calculated results are presented graphically for various 
frequencies and amplitudes in the applied electric fields. 
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Introduction

Some switching processes and nonlinear chaotic dynamics in second order ferro- and anti-ferromagnetic 
systems have been studied theoretically using Landau–Lifshitz equations of motion (Chan 2010;  
Toh 2009). For ferroelectric system, i. e., triglycine sulfate, the similar studies have been carried out 
theoretically and numerically using Landau theory, and experimentally by measuring responses  
of ferroelectric capacitor in series resonance circuit (Diestelhorst 2003). The switching processes and 
some conventional nonlinear responses in ferro- and anti-ferroelectrics have been discussed and studied 
(Lines, Glass 1977; Tan 2001). However, the nonlinear chaotic behaviors of antiferroelectrics are still left 
behind. It is of interest to study nonlinear chaotic dynamics in antiferroelectric systems. The context  
of this paper is focused on theoretical and numerical studies of chaotic dynamics in bulk antiferroelectric 
system in its first ordered phase. In the numerical simulations, the fourth-order Runge–Kutta method  
is adopted (Press et al. 1996, 704; Strogatz 2018, 33), and is based on the parameters of ammonium 
dihydrogen phosphate (ADP) at 80 K (Ledzion et al. 2004). These numerical results are presented 
graphically. 
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Formalism 
The formalism in this section is adopted and generalized from the Landau theory of first order 

ferroelectrics (FE) and second order antiferroelectrics (AFE) explained in Lines and Glass (1977).  
In general, the bulk AFE thermodynamic potential, G, is

  (1)

where subscript i represents all the existing field components in the AFE system. U is the internal 
energy of the system, T is the temperature, S is the entropy, Xj is the thermal stress, xj is the strain, Ei is 
the electric field induced by the system’s spontaneous polarizations and the applied electric field, and Di 
is the electric displacement. 

For the study of AFE, it is convenient to describe the system as two interpenetrating sublattices, 
namely sublattice-A and sublattice-B. Let DA and DB represent electric displacements, and EA and EB 
represent electric fields for sublattice-A and -B, respectively. With the assumptions that the system has 
zero stress and strain, the volume and temperature of the system remains constant in the applied electric 
field, the thermodynamic potential is isobaric and isothermal, Equation (1) can be rewritten as a polynomial 
of order parameters of sublattices, i.e., displacements of the two sublattices, DA and DB:

  (2)

where α1, α11, and α111 are constants, referred to as Landau coefficients, and η is the interaction constant 
of the two sublattices. For AFE, η has positive value, which facilitates an antipolar situation. The negative 
signs of the fourth order terms represent a first order transition of the AFE system, and the constant 2 
in front of α11 is for the convenience of the following derivations. In order to enable the fitting  
of experimental measurements, additional pairs of variables, i. e., staggered displacement R = DA − DB, 
staggered field ES = EA − EB, normal displacement Q = DA + DB, and the Maxwell field EM = EA + EB are 
defined (Lines, Glass 1977, 88). In terms of Q, R, EM, and ES, Equation (2) becomes 

 
 
         (3)

 

For antiferroelectrics, the staggered field is necessarily zero, i. e., ES = 0. α1 is temperature dependent, 
and is defined as . Then, Equation (3) becomes

 
 (4)

  

where β is a constant, and TC is the Curie temperature of the AFE system.
In order to ease the numerical simulations, reduced variables, or dimensionless quantities,  

we introduced gA, t, e, q, r, and ψ, corresponding to thermodynamic potential of AFE system, G, temperature, 
T, applied Maxwell field, EM, normal displacement, Q, and staggered displacement, R, and interaction 
constant of sublattices, η, as defined in Equations (5):

  (5a)
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  (5b)

  (5c)

  (5d)

  (5e)

  (5f )

The substitution of Equations (5) in Equation (4) results in dimensionless thermodynamic potential:

  (6)

Equation (6) is used in the formalism of nonlinear dynamical equations in the following sections.
ψ and t values are fitted by using material parameters of ammonium dihydrogen phosphate (ADP), 

an order-disorder AFE, which always shatter at the transition temperature. The Curie–Weiss law, i. e., 

, is used to fit the value of ψ, where ε∞, C1 and T1 are high frequency limit dielectric 

constant, the Curie constant and the Curie–Weiss temperature, respectively (Ledzion et al. 2004).  
The assumptions here are that the value of ψ is constant with respect to varying temperature and applied 
electric field. 

For ADP, the Curie constant, the Curie–Weiss temperature and the Curie temperature are  
C1 = 10160 K, T1 = 22.7 K, and TC = 148 K, respectively (Ledzion et al. 2004; Milek, Neuberger 1972, 44). 
Below the Curie temperature, the fitting of ADP material constants with the Curie–Weiss law gives 
spontaneous sublattice polarization, P0 ≈ 0.081 C × m–2 and ψ ≈ 0.01233 (the corresponding η ≈ 1.393 × 109). 
At T = 80K (t ≈ –3.346 × 10–3), one unit of e is approximately equivalent to 1.1206 × 1010 V ∙ m–1, and one 
unit of q is approximately equivalent to 0.1984 C × m–2.

Derivations of nonlinear dynamical equations 

With the presence of time dependent electric field, the Lorentz force per unit volume exerting  

on the AFE system is given by , and the resulting Landau–Khalatnikov equation of motion from 
Newton’s Second law is

  (7)

The first and second terms in Equation (7) represent acceleration and damping of the charge motion. 

 is the variation of AFE free energy density, G in Equation (4), with respect to quantity ,  

in which  represents the Maxwell and staggered displacements, i. e., Q and R. φ is the sublattice charge 
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density,  is the mass per unit charge, and  is the mass per unit charge per second of the AFE system.
For small damping, the dynamics of the Maxwell and staggered displacements are oscillatory. 

In terms of dimensionless time variable s, and dimensionless damping constant g, defined as , 

 where  and , and the previous dimensionless variables t, e, q, r, and ψ, 

the dimensionless oscillatory equations of motion are:

  (8а)

  (8b)

Compare with the Duffing oscillator equations of motion (Goldstone, Garmire 1984), Equations (8) are more 
complicated with extra fifth order terms on the right side of the equations. Because of the existence of third and 
fifth order nonlinear terms, Equations (8) can be solved only numerically. These coupled equations are used to 
numerically simulate nonlinear and chaotic dynamics in the AFE system. In the numerical simulations, the 
fourth-order Runge–Kutta method is adopted (Press et al. 1996, 704; Strogatz 2018, 33), and is based on AFE 
material parameters and constants. The chosen antiferroelectric material is Ammonium Dihydrogen Phosphate 
(ADP) at temperature T = 80 K. For ADP, the dimensionless interaction constant between AFE sublattices and 
temperature are ψ ≈ 0.0123 and t ≈ −3.346 ×10–3, and dimensionless critical field is eC ≈ 0.4166 (corresponding 
to critical applied electric to switch ADP from antiferroelectric to paraelectric states, i. e., EC ≈ 4.668 × 109  
V × m–1). The scaled natural frequency, ω0, of ADP is obtained from Equation (10a) by dropping all the dissipat-
ing and nonlinear terms. For ADP,   per unit s (dimensionless time). This shows that 
the natural frequency is temperature dependent (Ledzion, Bondarczuk, Kucharczyk 2004).

Nonlinear and chaotic states of AFE from numerical simulations 
The numerical simulations are carried out by applying the dimensionless time varying sinusoidal 

Maxwell field, e (corresponding to EM), to Equations (8). It is represented by e = e0 sin(ωs). As an example, 
this field is shown in Figure 1 for ω = 1.0 ω0, and e0 = 0.6 eC.  

Fig. 1. e versus s with ω = 1.0 ω0, and e0 = 0.6 eC

The calculations are started with extremely low frequency and extremely small amplitude of e, i. e.,  
ω = 4.0 × 10–3 ω0 and e0 = 1.0 × 10–13 eC. These values are close to the lowest limits computable by the 
numerical programming. The values of ω and e0 are increases in the subsequent calculations to exhibit their 
effects on the AFE system. The value of damping is the same for all simulations, i. e., the value for reduced 
damping is g = 0.01. The numerical results for each applied field are plotted in four figures, (a) shows the 
reduced/dimensionless normal displacement, q, versus reduced time, s, (b) shows the reduced normal 
displacement, q, versus the reduced applied Maxwell field, e, (c) shows the phase diagram of the system, i. e., 



126 https://www.doi.org/10.33910/2687-153X-2022-3-3-122-136

Numerical simulations of nonlinear and chaotic...

time derivative of reduced normal displacement, dq/ds, versus reduced normal displacement, q, and,  
(d) shows the Poincare Sections of the phase diagram started on 1/8 cycle for 200 cycles. The duration for 
numerical results in (a) to (c) are two cycles, as in Figure 1. 

The numerical results for e0 = 1.0 × 10–13 eC  and ω = 4.0 × 10–3 ω0, are shown in Figures 2(a) to 2(d).  
At this small applied field amplitude and low frequency, the AFE system exhibits linear response to e, with 
the q versus s curve in Figure 2(a) is exactly the same pattern as the curve e versus s in Figure 1. This linearity 
is further affirmed in Figure 2(b), the curve of AFE state is a straight line through the origin of the q versus 
e axes. The phase diagram of the system is plotted in Figure 2(c). The elliptical closed curve shows that the 
attractor for the AFE system is at the origin of the amplitude of applied field and value of frequency.  
The regularity and periodicity in dynamical response of this AFE system under driven applied field are 
shown by the Poincare Sections plotted in Figure 2(d), in which 200 points are taken with 2π phase increases 
for each subsequent point, started from 1/8 cycle. Figure 2(d) shows almost an overlapping of these points.     

Fig. 2. AFE’s phase diagrams when ω = 4.0 × 10–3 ω0, and e0 = 1.0 × 10–13 eC  
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For applied field amplitude and frequency increased to e0 = 1.0 × 10–5 eC and ω = 0.1 ω0, the numerical 
results are shown in Figures 3(a) to 3(d). At these values of applied field amplitude and frequency, the 
AFE system exhibits period multiplication centered on sinusoidal wave as shown in Figures 3(a).  
This period multiplication is further exhibit in Figure 3(b), with the wavy features centered on the line 
of AFE state. The corresponding phase diagram of the system is plotted in Figure 3(c). In the phase 
diagram, the period multiplication exhibits as multiple ellipses skewed to the right. The corresponding 
Poincare Sections are plotted in Figure 3(d). The Poincare Sections show an overlapping to only four 
points, this means the responses of the AFE system are quasi-periodic in these small values of applied 
field amplitude and frequency.  
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Fig. 3. AFE’s phase diagrams when ω = 0.1 ω0, and e0 = 1.0 × 10–5 eC

With applied frequency maintains at ω = 0.1 ω0, the subsequent increases of applied field amplitude 
to (i) e0 = 0.3 eC, (ii) e0 = 0.95 eC, (iii) e0 = 1.0 eC, (iv) e0 = 100.0 eC, and, (v) e0 = 2.0 × 106 eC, are plotted  
in Figures 4 to 8. From the curves and Poincare Sections in Figures 4 to 7, the features of quasi-periodicity 
decrease as applied field amplitude increases. 
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Fig. 4. AFE phase diagrams when ω = 1.0 ω0, and e0 = 0.3 eC 
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Fig. 5. AFE phase diagrams when ω = 1.0 ω0, and e0 = 0.95 eC

https://www.doi.org/10.33910/2687-153X-2022-3-3-122-136


Physics of Complex Systems, 2022, vol. 3, no. 3 131

S.-Ch. Lim

Fig. 6. AFE phase diagrams when ω = 1.0 ω0, and e0 = 1.0 eC 
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Fig. 7. AFE phase diagrams when ω = 1.0 ω0, and e0 = 100.0 eC 
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Fig. 8. AFE phase diagrams when ω = 1.0 ω0, and e0 = 2.0 × 106 eC 

When the applied field amplitude is extremely high as in Figures 8, with e0 = 2.0 × 106 eC  close to the 
upper limit computable by the numerical programming, the q versus s curve in Figure 8(a) is aperiodic, 
chaotic, and is highly distorted from sinusoidal shape, with little wavelike features in the first and third 
quadrants of each cycle. These features are more obvious in Figure 8(b). The curve of the AFE state, i. e., q 
versus e, shows wavelike features in between a double hysteresis loop. The corresponding phase diagram 
is plotted in Figure 8(c), which is also identified as butterfly curves of the AFE system. In the phase diagram, 
the curves are winding around two values of q, one is positive, the other one is negative, which are identified 
as a set of strange attractors (Strogatz 2018). The Poincare Sections in Figure 8(d) show one segment of 
line, this means the responses of the AFE system in subsequent cycles are very close but not overlapping.  

With the applied field amplitude maintained at e0 = 0.6 eC, the subsequent increases of applied frequency 
to (i) ω = 2.0 ω0, and, (ii) ω = 3.0 ω0, are plotted in Figures 9 and 10, respectively. From the curves and Poincare 
Sections in Figures 9 and 10, the features of quasi-periodicity decrease as applied field frequency increases. 
This is obvious in the Poincare Sections, as Figure 10(d) shows more branches of points than Figure 9(d).
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Fig. 9. AFE phase diagrams when ω = 2.0 ω0, and e0 = 0.6 eC
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Fig. 10. AFE phase diagrams when ω = 3.0 ω0, and e0 = 0.6 eC

Conclusion

From the results, i. e., the coupled oscillatory Equations of motion (8), and the numerically generated 
curves in Figures 2 to 10, the AFE system, i. e., ADP, in its first ordered phase exhibits high sensitivity to 
changes of initial conditions in frequencies and amplitudes of the applied electric field. This is due to the 
existence of nonlinear third and fifth order terms in Equations (8). As the amplitude of field slightly 
increases, the system exhibits quasi-periodicity with period multiplications on top of the applied fre-
quencies. This feature is obvious in Figures 3 to 5, with the wavy structures on the slightly distorted 
patterns of q versus s, and q versus e curves. As the amplitude of applied field increases further, the 
system loses its periodicity, or the responses of the system become aperiodic, as shown in Figures 5 to 7. 
When the amplitude of applied field is extremely high, the system exhibits apriodic chaotic responses 
as shown in Figures 8. The main mechanism for the changes of responses of the AFE system from  
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periodic to quasi-periodic, to aperiodic, and to aperiodic chaotic, corresponding to the increases  
in amplitudes of the applied electric fields in Figures 2 to 8, is mainly due to repeated stretching and 
folding (Strogatz 2018) of the responses of the AFE system to the applied electric field. 

The theoretical and numerical approaches here manage to unravel parts of the nonlinear and cha-
otic responses of the AFE systems, i. e., ADP, with respect to changes in frequency and amplitude of the 
applied electric field. The model described in this paper can be applied to other first order AFE which 
can be formulated by the same approaches. The results of nonlinear and chaotic responses using this 
approach can be further used to determine the transmission and reflection of optical waves through 
films and multilayers of nonlinear medium (Goldstone, Garmire 1984). This is an alternative to the con-
ventional approach in derivations of nonlinear susceptibility tensors using series expansion of polariza-
tion in terms of electric fields, e. g. P = ε0χ

(1) E + ε0χ
(2) EE + ε0χ

(3) EEE, and use the results in the derivations 
of linear and nonlinear dielectric functions (Murgan et al. 2002).

Conflict of Interest

The author declares that there is no conflict of interest, either existing or potential.

References

Chan, T. Y. (2010) Study of chaotic dynamics and hysteresis in bulk antiferromagnet and Antiferromagnetic Film. 
MSc Thesis (Antiferromagnetism). George Town, Universiti Sains Malaysia, 125 p. (In English)

Diestelhorst, M. (2003) What can we learn about ferroelectrics using methods of nonlinear dynamics? Condensed 
Matter Physics, 6 (2), 189–196. https://doi.org/10.5488/CMP.6.2.189 (In English)

Goldstone, J. A., Garmire, E. (1984) Intrinsic optical bistability in nonlinear media. Physical Review Letter, 53 (9), 
910–913. https://doi.org/10.1103/PhysRevLett.53.910 (In English)

Ledzion, R., Bondarczuk, K., Kucharczyk, W. (2004) Temperature dependence of the quadratic electrooptic  
effect andestimation of antipolarization of ADP. Crystal Research and Technology, 39  (2), 161–164.  
https://doi.org/10.1002/crat.200310165 (In English)

Lines, M. E., Glass, A. M. (1977) Principles and applications of ferroelectrics and related materials. Oxford: Clarendon 
Press, 664 p. (In English)

Milek, J. T., Neuberger, M. (1972) Handbook of Electronic Materials. Vol.8. Linear electrooptic modular materials. 
New York: IFI/Plenum Publ., 264 p. (In English) 

Murgan, R., Tilley, D. R., Ishibashi, Y. et al. (2002) Calculation of nonlinear-susceptibility tensor components  
in ferroelectrics: Сubic, tetragonal, and rhombohedral symmetries. Journal of the Optical Society of America B, 
19 (9), 2007–2021. https://doi.org/10.1364/JOSAB.19.002007 (In English)

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1996) Numerical recipes in C: The art of scientific 
computing. 2nd ed. Cambridge: Cambridge University Press, 537 p. (In English)

Strogatz, S. H. (2018) Nonlinear dynamics and chaos with applications to Physics, Biology, Chemistry, and Engineering. 
New York: CRC Press, 532 p. https://doi.org/10.1201/9780429492563 (In English)

Tan, E. K. (2001) Static and dynamic properties of ferroelectric materials. MSc Thesis (Ferroelectricity). George 
Town, Universiti Sains Malaysia, 164 p. (In English)

Toh, P. L. (2009) Study of chaotic dynamics and hysteresis in bulk ferromagnet and ferromagnetic film based on 
yttrium iron garnet. MSc Thesis (Ferromagnetic Materials). George Town, Universiti Sains Malaysia, 76 p.  
(In English)

https://www.doi.org/10.33910/2687-153X-2022-3-3-122-136
https://doi.org/10.5488/CMP.6.2.189
https://doi.org/10.1103/PhysRevLett.53.910
https://doi.org/10.1002/crat.200310165
https://doi.org/10.1364/JOSAB.19.002007
https://doi.org/10.1201/9780429492563

