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Abstract. In this work, we simulate mechanical properties of pseudo-graphene crystals G5-7v1, G5-6-7v2,
G4-8vl, G5-6-8v2, G5-6-8v4, G5-8v1, which include dense networks of wedge disclinations of alternate
signs. The crystals were studied using the molecular dynamics method. The paper compares the values
of elastic properties of graphene and pseudo-graphene obtained through AIREBO, Tersoff, and LCBOP
interatomic interaction potentials. It shows that the application of these potentials in modeling pseudo-
graphene crystals is limited. The study concludes that it is necessary to update the existing potentials
of interatomic interaction in allotropes of carbon or create a new one.

Keywords: molecular dynamics, pseudo-graphene, elastic properties, disclination, defect structure

Introduction

Graphene is a two-dimensional carbon crystal with a variety of promising properties: high conductivity
(Novoselov et al. 2005), thermal conductivity (Chen et al. 2010), and a unique set of mechanical properties
(Lee et al. 2008). Its successful synthesis (Novoselov et al. 2004) attracted great attention and marked
an active growth of interest in the study of two-dimensional crystals.

In graphene, just as in three-dimensional crystals, one can observe crystal lattice defects (Hao et al. 2011;
Wei et al. 2012). Among them are two-dimensional (pores and inclusions), one-dimensional (interfaces
without misorientation and grain boundaries), and point-like (vacancies, interstitial atoms and impurity
atoms, dislocations and disclinations) defects (Romanov et al. 2015; 2018). It is important to study
the effects of such defects to predict the properties of graphene samples and to control their characteristics.
For example, an interface in graphene can increase its thermal (Jafri et al. 2010) or electrical conductivity
(Bagri et al. 2011).

A wide range of research works focuses on two-dimensional carbon crystals, different from
graphene (Baughman et al. 1987; Enyashin, Ivanovskii 2011; Gong et al. 2020; Terrones et al. 2000).
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They have a high density of carbon atomic rings with defects organized periodically. These crystals are
commonly referred to as ‘graphene allotropes’ (Wang et al. 2015; Zhuo et al. 2020), ‘carbon allotropes’
(Deb et al. 2020; Zhang et al. 2015), ‘pseudo-graphenes’ (Abramenko et al. 2020), etc. The majority
of these materials are yet to be synthesized (with the exception of biphenylene (Fan et al. 2021) —
the only synthesized pseudo-graphene crystal (PGC) so far). However, it is important to predict
the properties of such materials to improve the modelling methods and algorithms to a further degree
of precision. We hope that in the near future predicted property values of a non-synthesized material
will be as close to the actual ones as possible. In addition, the predictions can be used as a roadmap for
researchers who aim to synthesize such crystals as, thanks to the prediction algorithms, lots of material
suggestions have proven to be unstable (Xie et al. 2020), and, thus, crystals were impossible to synthesize.

The properties of carbon-based materials can be studied theoretically using various methods: atomistic
modeling, density functional theory, analytical calculation, etc. One of the most popular calculation
methods is molecular dynamics. It is a fast prediction method that allows calculating simple and complex
properties on a high-scale crystal lattice. The molecular dynamics method uses a special approximation
function — interatomic potential. It displays the dependency of potential energy between each pair
of atoms on the distance between the atoms. The function serves as a physical basis of molecular dynamics
and each material requires a new function. Given that this function is an approximation, the approaches
to its description vary. For example, for calculations on graphene we could use Tersoff, AIREBO, LCBOP
(Los, Fasolino 2003; Stuart et al. 2000; Tersoff 1988) and other styles of interatomic potentials.

In this article, we provide a comparison between the three mentioned above interatomic potentials
used in molecular dynamics calculations to study the mechanical properties of several PGCs. Our goal
is to find out whether the interatomic potentials designed for graphene are applicable to PGCs.
We start with the description of the modeling technique and materials models in Section 2. In Section 3,
we analyze the mechanical properties of several PGCs using molecular dynamics. In Section 4,
we discuss the obtained results and compare the potentials.

Modeling technique and materials

The method of molecular dynamics is effective for in-depth investigation of elastic deformation
in graphene crystals and pseudo-graphenes. We used the LAMMPS software package to obtain
the elastic properties of the studied crystals and made a comparison between the three potentials
of interatomic interaction: AIREBO, Tersoff, and LCBOP. AIREBO and LCBOP potentials were developed
for the simulation of carbon systems and successfully tested for the simulation of graphene (Baimova et al.
2014; Hansen-Dorr et al. 2019). The Tersoff potential used in this work was developed for modeling
silicon carbide. It also showed good results when modeling two-dimensional allotropes of carbon
(Shirazi et al. 2019; Winczewski et al. 2018). In our work, the simulation was performed at room tem-
perature and with periodic boundary conditions applied to the boundaries of the system. Energy mini-
mization was carried out using the Polak-Ribiére conjugate gradient algorithm (Polak, Ribiere 1969).
To obtain the elastic constants in the simulation, a deformation of 0.5% was applied. We visualized
the obtained numerical results with the OVITO software package.

To interpret the obtained data, it is necessary to convert the tensor of elastic constants into elastic
moduli, such as Young’s modulus and Poisson’s ratio. Hooke’s law for a two-dimensional anisotropic
body has the following format:

O-xx C'1 1 Cl 2 0 8xx
o wo| = Cl 5 C22 0 & Wl (1)
o, L0 0 Cyll2e,

where o, and g; are components of stress and strain, correspondingly; C,are components of the ma-
trix of elastic constants.

For the matrix of elastic constants, components C, and C, obey the condition C,=C,, while com-
ponents C , C,, C_, and C,, are equal to zero due to the symmetry properties of a two-dimensioal
crystal. The labeling of elastic constants corresponds to the labeling of three-dimensional bodies, i. e.,
index ‘1’ corresponds to the x-direction, ‘2’ to the y-direction, and ‘6’ to the xy-component. Thus, there
are 4 independent components — C,,, C,,, C,,, and C_. The conventional elastic moduli of the material

are calculated by the following formulas:

12’
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where E is Young’s modulus corresponding to the i-direction; v, is Poisson’s ratio for the longitudinal
direction i and the transverse direction j, G is a shear modulus.

For the case of a two-dimensional isotropic crystal, the following conditions are satisfied: C,, = C,,
C,=C,, C, =(C, - C,)/2. Thus, there are only two independent components: C,, and C,,. The elastic
properties of the material are calculated by the following formulas:

;G:C66 ) (2)

2 2
v:&;E:CH_Clz;G:E(I"'V) . 3)
C]l C11 2

The obtained results for the mechanical properties of graphene and pseudo-graphene crystals are
expressed in GPa, similarly to three-dimensional materials. The transition from N/m to Pa is made tak-
ing into account the ‘thickness’ of the two-dimensional crystal, which was taken to be 3.4 A (Maitra
etal. 2012).

In this work, we consider a graphene crystal and a number of low-energy pseudo-graphenes: G5-7v1,
G5-6-7v2, G4-8v1, G5-6-8v2, G5-6-8v4, G5-8v1. The nomenclature of these crystals corresponds to the
carbon rings that make up this crystal. It is known that graphene consists of hexagonal six-member
atomic rings. In the presence of defects in graphene, rings with symmetry different from six-member
are formed. Thus, pseudo-graphene G5-7v1 consists of only five- and seven-membered atomic rings.
See the review (Abramenko et al. 2020) for more detailed information on the nomenclature. Pseudo-
graphenes are the lowest energy ‘allotropes’ of graphene (Romanov et al. 2018). The crystals under study
are shown in Fig. 1. When modeling these two-dimensional crystals, an approximation was used in which
the crystal has a flat shape, i. e., they do not bend.

g)

Fig. 1. Structure and primitive lattice of graphene (a) and pseudo-graphenes G5-7v1 (b), G5-6-7v2 (c), G5-6-8v2 (d),
G5-6-8v4 (e), G5-8v1 (f) and G4-8v1 (g). The colors indicate defective carbon atomic rings: 7-unit rings — blue,
5-unit rings— gray, 8-unit rings—yellow, 4-unit rings—green
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Results of molecular dynamics calculations

Tables 1-3 present a comparison of elastic properties of the studied PGCs and graphene, calculated

using the AIREBO, Tersoff, and LCBOP potentials.

Table 1. Elastic constants for graphene and pseudo-graphene crystals calculated via molecular dynamics using

AIREBO interatomic potential

Graphene G5-6-7v2 G5-7v1 G4-8vl G5-6-8v2 G5-6-8v4 G5-8vl

C,,, GPa 952.4 1016.03 1016.5 598.2 1040.3 923.31 1195.98
C,, GPa 952 950.85 1010.7 596.3 970.89 864.64 928.13
C,,, GPa 336 180.8 129.2 445 116.61 201.29 45.78
C,, GPa 297.5 456.45 391.4 453.5 328.68 414.68 211.34

E, GPa 833.81 981.65 999.98 266.11 1026.29 876.45 1193.72
E, GPa 833.46 918.68 994.28 265.27 957.82 820.76 926.38
v, 0.353 0.190 0.128 0.746 0.120 0.233 0.049
vy 0.353 0.178 0.127 0.744 0.112 0.218 0.038

G, GPa 297.5 456.45 391.4 453.5 328.68 414.68 211.34

Table 2. Elastic constants for graphene and pseudo-graphene crystals calculated via molecular dynamics using

Tersoff interatomic potential

Graphene G5-6-7v2 G5-7v1 G4-8vl G5-6-8v2 G5-6-8v4 G5-8vl

C,,, GPa 1050.2 881.2 762.9 734.7 815.29 798.27 726.65
C,, GPa 1050.2 914.1 808.5 734.7 798.81 827.28 724.97
C,,, GPa 68.7 133.4 221.1 146.69 179.95 163.63 247.16
C, GPa 490.8 393.6 376.5 14.92 327.87 306.53 229.43
E,, GPa 1045.71 861.73 702.44 705.41 774.75 765.91 642.39
E,, GPa 1045.71 893.91 744.42 705.41 759.09 793.74 640.91
Vi 0.065 0.146 0.273 0.200 0.225 0.198 0.341
v, 0.065 0.151 0.290 0.200 0.221 0.205 0.340

G, GPa 490.8 393.6 376.5 14.92 327.87 306.53 229.43

Table 3. Elastic constants for graphene and pseudo-graphene crystals calculated via molecular dynamics using LCBOP
interatomic potential

Graphene G5-6-7v2 G5-7v1 G4-8vl G5-6-8v2 G5-6-8v4 G5-8vl

C,, GPa 976.2 958.8 835.2 513.99 933.86 883.71 1017.86
C,, GPa 976.3 900.4: 854.2 514.69 870.97 827.76 765.06
C,,, GPa 216.4 154.9 230.2 367.14 134.63 168.54 159.63
C, GPa 379.9 378.2 333.7 571.24 297.31 357.51 212.48
E, GPa 928.23 932.15 773.16 252.10 913.05 849.39 984.55
E, GPa 928.33 875.38 790.75 252.44 851.56 795.62 740.03
v, 0.222 0.172 0.269 0.713 0.155 0.204 0.209
v, 0.222 0.162 0.276 0.714 0.144 0.191 0.157

G, GPa 379.9 378.2 333.7 571.24 297.31 357.51 212.48
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Discussion

As can be seen from the results presented in Table 1, the AIREBO potential shows the values
for graphene that are comparable with the experimental (Lee et al. 2008) and simulation data obtained
using density functional theory (Wei et al. 2009). This potential is quite often used in various studies
of graphene and has proven to be effective (Akhunova et al. 2022; Kochnev et al. 2014). However,
if graphene is taken as an ideal crystal, then pseudo-graphenes will be graphene crystals with a dense
distribution of disclination defects. Thus, it can be assumed that the mechanical performance may be
degraded. This is supported by DFT calculations (Fthenakis et al. 2015; Pereira et al. 2016; Sun et al.
2016): the elastic properties of graphene and pseudo-graphenes were compared, and a decrease
in the value of Young’s modulus for pseudo-graphenes compared to defect-free graphene was observed.
This can be considered as one of the criteria to support the fact that the potential of interatomic interac-
tion gives incorrect data for the selected material. One can observe this pattern for almost all pseudo-
graphene crystals, excluding only PGC G5-8v1 and G4-8v1. However, for the G4-8v1 crystal, not only
underestimated values of Young’s modulus were found, but also the formally calculated values of Poisson’s
ratio greater than 0.5 were observed, which has no physical meaning. This indicates the low suitability
of the AIREBO potential for studying the mechanical properties of pseudo-graphenes, despite the fact
that it can be used to model the structure of the undeformed crystals (Kolesnikova et al. 2020;
Romanov et al. 2018; Rozhkov et al. 2018).

The Tersoff potential is poorly suited for describing the elastic properties of graphene (Lebedeva et
al. 2019), but it is often used to study various two-dimensional carbon allotropes (Shirazi et al. 2019;
Winczewski et al. 2018). We can observe the same picture in our research (see Table 2), where almost
all the results for pseudo-graphenes have acceptable values, with the exception of G4-8vl PGC.
In G4-8vl, an anomalously small value for C,, constant is observed. This indicates that the potential
is unsuitable for studying this material. It may be necessary to carry out additional refinements
in the parameters of the potential, which would make it possible to produce a correct description
of the behavior of atoms in the crystal lattice of PGC G4-8v1.

For the results obtained using the LCBOP potential, we can see that it is well suited for studying
graphene and for studying parts of pseudo-graphenes. For G5-6-7v2 and G5-8v1, we can see slightly
overestimated values when compared with the values for defect-free graphene.

We can take DFT calculations for graphene from (Pereira et al. 2016) as a baseline, where Young’s
modulus E = 960 GPa. Young’s modulus, calculated with Tersoff, is equal to E, = 1046 GPa. This value,
calculated with AIREBO, is equal to 833 GPa, and with LCBOP to 928 GPa. Comparing to DFT,
the deviation for all potentials is more than 10%. This relates not only to Young’s modulus, but to other
elastic constants as well.

For PGC G4-8vl, all three potentials display unsatisfactory results for elastic constants. The AIREBO
and LCBOP potentials result in Poisson’s ratio of about 0.7 (this is again unphysical) and Young’s mod-
ulus of less than 300 GPa. In addition, for all considered potentials, one can notice a very wide scatter
when comparing the values of Poisson’s ratio with each other, both for PGCs and graphene. This can be
justified by the fact that one cannot make a direct comparison between pseudo-graphene and graphene,
since they have a completely different crystal structure with a different order of symmetry. The difference
in symmetry is true for most PGCs.

The results obtained for elastic constants show that all the crystals studied in this article meet
the Born stability criterion (Haastrup et al. 2018). The stability of the studied crystals is also supported by
our DFT calculations (Abramenko, Rozhkov 2021) and prior research (Pereira et al. 2016; Sun et al. 2016).

The MD calculations of elastic constants that we have performed on graphene display a wide devia-
tion in comparison not only to DFT, but also to the calculations themselves — elastic constants evalu-
ated with the use of one interatomic potential differ a lot to ones calculated with the use of another
interatomic potential.

Current works focusing on modeling elastic properties for defect-free graphene still exhibit strong
differences in the reported values. See (Lebedeva et al. 2019) for an in-depth analysis of the scatter
in Young’s modulus and Poisson’s ratio obtained using different potentials. Thus, Young’s modulus
is reported to be from 800 to 1200 GPa, while Poisson’s ratio for graphene can vary from 0.15 to 0.22.
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Conclusions

Calculated elastic constant values for pseudo-graphene crystal (PGC) with the use of molecular
dynamics differ significantly in comparison with the values calculated with density functional theory
(DFT). Even for graphene with the results much closer to DFT calculations, molecular dynamics values
vary in an overly wide spectrum.

As of now, it is difficult to make a precise enough prediction of properties of pseudo-graphene crys-
tals as no similarities on predicted values have been found between several interatomic potentials used
in calculations. Thus, we cannot use interatomic potentials designed for graphene to calculate the prop-
erties of pseudo-graphene.

Among the studied potentials, the LCBOP and Tersoff potentials can be used with limitations to study
certain PGCs. However, their results for G4-8vl PGC and other pseudo-graphene crystals indicate
the need to upgrade the obtained potentials or to develop a new interatomic interaction potential
adapted for the study of two-dimensional allotropes of carbon.
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Abstract. The article investigates how the polarization temperature in the corona discharge field and pre-
annealing modes of polyvinylidene fluoride copolymer films with tetrafluoroethylene effect thermally
stimulated depolarization currents. The parameters of electrically active defects responsible for relaxation
processes, the amount of charge (Q) released during depolarization and the value of the piezoelectric module
d,, were determined for samples with different polarization temperatures. The article discusses the best
temperature conditions for creating a piezoelectric state in polyvinylidene fluoride films.

Keywords: polyvinylidene fluoride, thermal activation spectroscopy, thermostimulated depolarization,
corona discharge, electrically active defects

Introduction

Today, numerous fields of science and technology use a wide variety of devices. Many of them include
dielectric materials made of polymer films. One of the promising materials in the field of electroactive
polymers is polyvinylidene fluoride (PVDF) and its copolymer. PVDF is a piezoelectric polymer
with unique properties lacking in traditional inorganic piezoelectrics, such as quartz or barium.
The advantages of this material are high temperature stability during operation in the air, high rigidity
at low temperatures, high mechanical strength, good electrical insulation, chemical and radiation resistance,
and low flammability. These properties of polyvinylidene fluoride make the material suitable for use
in various applications.

As of today, PVDF is the only polymer material with high piezoelectric properties. However,
the technology of manufacturing piezoelectric elements from PVDF presents a few difficulties because
high electric fields and elevated temperatures must be used in the polarization process (Shakirzyanov
etal. 2016).

The paper investigates how polarization and pre-annealing temperatures impact the properties
of PVDF-based piezoelectric elements during their manufacture. The paper also discusses optimal
temperature parameters for polarization and pre-annealing of PVDF films.
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Materials and methods

The study investigated F-2ME polyvinylidene fluoride (PVDF) films with a thickness of 20 microns
and an orientation extraction coefficient of 3.5. The degree of crystallinity of the studied samples
was approximately 55%, and the crystalline phase consisted mainly of the polar 3-phase.

To create a piezoelectric state in the studied samples, polarization was applied in the corona discharge
field at an elevated temperature ranging from 45 to 65 °C. The polarization time in the corona discharge
field was 10 minutes, and the polarizing field was E = 1.2 MV/cm. During the polarization, the isometric
state of the PVDF films under study was ensured.

The samples studied in the work were divided into three groups:

1) Without pre-annealing;

2) With pre-annealing at a temperature of 90°C in a free state for three hours;

3) With pre-annealing at a temperature of 90°C in an isometric state for three hours.

To study electrical relaxation in polymer materials, the method of thermally stimulated depolariza-
tion was used at the TSC II (France). The piezoelectric module d,, was determined using
the YE2730A d,, Meter (USA).

Results

Fig. 1 shows TSD curves of PVDF samples that were pre-polarized at different Tp temperatures.
It can be seen from the results that the maximum of the film depolarization current shifts to the high-
temperature region with an increase in the polarization temperature of the samples.

6,00E-009 ----T=65°C
——T=45°C
5,00E-009 -} 't —-—T=55°C

4,00E-009
<C 3,00E-009
2,00E-009

1,00E-009

0,00E+000

Fig. 1. TSD curves of PVDF samples with different polarization temperature Tp

According to (Butenko et al. 2008), the relaxation peak in this temperature region is associated with
dipole relaxation in the crystalline phase or in regions intermediate between the crystalline and amor-
phous phases. The shift of the peak towards higher temperatures with an increase in the polarization
temperature can be explained by the formation of more perfect and thermally more stable crystallites.

The activation energies of electrically active defects (EAD) responsible for this relaxation process
were determined by the Garlick—Gibson method (Gorokhovatsky 1981) and are shown in Table 1.

158 https://www.doi.org/10.33910/2687-153X-2023-4-4-157-160



https://www.doi.org/10.33910/2687-153X-2023-4-4-157-160

E. A. Volgina, M. E. Merkulova, D. E. Temnov

Table 1. Activation energies of EAD (Ea), the amount of charge released during depolarization (Q) and the value
of the piezoelectric module d., for different polarization temperatures of Tp samples

T, C E eV QC d,, pC/N
45 0.65 + 0.02 (9.37 £ 0.01) x 107 26+ 1
55 0.76 + 0.02 (9.54 + 0.01) x 1077 30+ 1
65 0.81 + 0.02 (9.72 £ 0.01) x 1077 321

As the polarization temperature increases, the area under the graph also increases and, consequent-
ly, the total number of relaxers that participate in the polarization process increases.

Thus, with an increase in the polarization temperature of PVDF films in the isometric state,
the activation energy of electrically active defects and their number increases resulting in larger and
more stable crystallites.

The mechanical relaxation of PVDF (Gorokhovatsky et al. 2020) developing in the same temperature
region allows us to conclude that the electrical and mechanical properties of this material are closely
interrelated. Mechanical stresses arising during heating can contribute to the formation of thermally
stable crystalline regions in the polymer. This is confirmed by a slight increase in the piezoelectric mod-
ule d,, of the studied samples observed with an increase in the polarization temperature with all other
conditions being equal (Table 1).

From the above results, the optimal polarization temperature is Tp = 65°C. A further increase
in temperature leads to numerous electrical breakdowns of the sample.

Figure 2 shows the results of thermally stimulated depolarization of samples with different heat treat-
ments carried out before the polarization.
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0 20 40 60 80 100

Fig. 2. TSD curves for PVDF samples polarized at Tp = 65° C with various preliminary temperature treatments:
1—without pre—annealing; 2—with pre-annealing in a non-isometric (free) state; 3—with pre-annealing
in an isometric state
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The position of the TSD peak does not depend on the conditions of heat treatment, however,
the largest area under the curve is observed when isometric annealing is performed.

The obtained results show a pattern: PVDF samples pre-annealed in an isometric state have the larg-
est area under the curve. This indicates that mechanical relaxation and polarization of PVDF
are strongly interconnected.

Consequently, an increase in the time spent by the PVDF film in a mechanically stressed state (more
than 3 hours for sample 3 and10 minutes for sample 1) leads to an increase in the number of crystallites
involved in the polarization of samples.

Conclusions

The study of polarization and pre-annealing temperature regimes in PVDF films allows us to conclude
that the retention of samples in an isometric state at an elevated temperature contributes to the improvement
of their piezoelectric properties. This can be explained by the formation of more perfect crystallites during such
annealing.

Preliminary annealing of samples in the isometric state at T = 90°C for 3 hours, followed by polarization
at a temperature of Tp = 65°C in the corona discharge field, is the best temperature regime for creating
a piezoelectric state in PVDF films.
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Abstract. In the present paper the relaxation properties of uniaxially oriented polymer threads are investigated.
Vibrational relaxation in mechanical system with one degree of freedom is analyzed. This system consists
of a heavy weight suspended on a light thread made of a uniaxially oriented polymer material.

The authors experimentally confirmed the existence of beats for a number of polymer materials (polycapromide,
SVM, Terlon, Armos, etc.) at a certain static load level below the glass transition temperature. A physical
explanation is given for the existence of the second vibration mode.

On the one hand, elastic oscillations occur in the system, on the other hand, according to the barrier model,
oscillations of the occupation numbers of energy levels take place. Thus, another vibration mode arises,
associated with highly elastic deformation, since highly elastic deformation is determined by the occupation
numbers of the corresponding states. At close frequencies the beat effect is observed.

Keywords: uniaxially oriented polymeric materials, longitudinal low amplitude oscillations, highly elastic
deformation, constitutive equation, beats

Introduction

The authors studied the elastic-relaxation properties of uniaxially oriented polymer threads
in the dynamic mode of deformation. A theoretical explanation of the beat’s occurrence is proposed.

In the second half of the last century the effects of occurrence of vibrational relaxation in some systems
were discovered. For instance, the phenomenon of the occurrence of current oscillations in a homogeneous
multi-valley semiconductor placed in a strong electric field was discovered—the Gunn effect (Gunn 1963).
In chemistry, it is the Belousov-Zhabotinsky reaction (Belousov 1982; Zhabotinskii 1974)—a class
of chemical reactions occurring in an oscillatory mode, in which some reaction parameters (color,
concentration of components, temperature, etc.) change periodically, forming a complex spatio-temporal
structure of the reaction medium. In the present article vibrational relaxation in a mechanical system
with one degree of freedom is analyzed. This system consists of a heavy weight suspended on a light
thread made of a uniaxially oriented polymer material below the glass transition temperature.

Previously, in (Romanova et al. 2000; 2005; 2007b; Rymkevich et al. 2014) for a number of studied
polymer threads (SVM, lavsan, terlon, etc.), it was found that in a certain range of mechanical stresses
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Complex non-exponential form of damped vibrations...

(or levels of static deformation) a complex non-exponential form of damped oscillations or beats
schematically presented in Fig. 1 is observed, which is difficult to explain using the traditional description.
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Fig. 1. Beatings (Amplitude-Modulated Free Oscillations)

The deformation curve in Fig. 1 can be represented at least as the result of the addition of two vibration
modes. The question is why the second mode of oscillations appears in a mechanical system that formally
has one degree of freedom. There are at least two explanations for this phenomenon. The first one is that
the material under consideration obeys non-linear differential equations. The second one is that there
are “hidden” degrees of freedom in the system. The authors adhere to the second explanation, because
nonlinear equations should be linearized when studying low-amplitude oscillations. From the point
of view of mechanics, the method of integral transformations based on the Boltzmann-Volterra equations
when describing the mechanical properties of highly oriented polymers is often used (Gorshkov et al. 2004;
Makarov et al. 2015; Romanova et al. 2007a; Stalevich et al. 2005). The authors of this article had previously
shown that the fact of the presence of beats requires the existence of an oscillatory relaxation core, which,
in principle, does not contradict the laws of mechanics (Rabotnov 1988), but requires additional
explanations. Various rheological models of uniaxially oriented polymeric materials were considered
in (Gorshkov et al. 2015; Rymkevich et al. 2021). In particular, a rheological model of polymer filament
with hidden degrees of freedom was proposed in (Gorshkov et al. 2023). The described model consists
not only of a spring and a damper, but also of a spiral visco-elastic element connected in series to them

(Fig. 2).

'rJ o

Ca By

Fig. 2. Structural rheological model of a polymer thread with a spiral visco-elastic element
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This mechanical model is a system with two degrees of freedom. One degree of freedom corresponds
to translational motion u, the other one to rotational (rotary) motion ¢ . Rotational motion (rotational
degree of freedom) is a hidden from the “macro-observer” form of motion. The transformation
of the rotational motion of the ball into translational movement ensures the occurrence of an oscillatory
beating mode. This rheological model can sufficiently describe the experimental results but does not
provide any physical explanation. The authors propose to consider the complex and diverse supramolecular
structure of oriented polymer materials as a set of different groups of macromolecules (clusters) in one
of the possible stable states, separated by energy barriers (Gorshkov et al. 2013; Romanova 2007b).

As it was shown in (Rymkevich 2018), regardless of the conformational models considered, all allowed
highly elastic (conformational) states differ from each other only in the heights and widths of the energy
barriers between them. Therefore, the following assumptions for describing oriented polymer materials
are accepted:

(a) polymer macromolecules contain groups of molecules in different stable states separated by energy
barriers;

(b) the elastic part of the deformation obeys Hooke’s law

where E0 is the true elastic modulus.

Here and further, we assume that the total deformation of a polymer material can be represented as
the sum of two terms—elastic (X ) and highly elastic (&), i. e.:

E=x+¢,,.
Groups of macromolecules that can change their conformations during deformation will be called

active conformational elements (ACE). We present active conformational elements with two stable energy
states in the form of a model depicted in Fig. 3.

EA
— ) S 2
H
1’
U
|
0 | S z

Fig. 3. Energy diagram of ACE as a function of cluster size for two stable states

In the energy diagram (Fig. 3), these two stable states with energies £, =0 and E, =U are respectively
separated by a potential barrier of height H >0. We will call state 1 “conditionally collapsed’, and state
2—"“conditionally expanded” In general case the value of the energy gap can be either greater or less than
zero and depends on the type of conformational states. During the transition from state 1 to state 2,
the geometry of the ACE changes, which is accompanied by absolute deformation §>(. And the third
assumption:

(c) all ACEs are fully described by three numerical characteristics: barrier height H, energy difference
U and deformation quantum ¢ .
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An attempt was proposed in (Golovina et al. 2022) to explain the observed complex amplitude
modulation using a two-stable state theory within the framework of the assumptions proposed above.
But such a theory leads to a nonlinear differential equation, which does not allow us to give a complete
explanation of the indicated phenomenon of amplitude modulation within the framework of the observed
frequencies. Therefore, the authors propose to consider a theory with three stable states.

Constitutive equation for the three-level model

Let us consider a model with three stable energy states (Fig. 4).
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Fig. 4. Energy diagram of ACE as a function of cluster size for three stable states

A forced orientation of macromolecules takes place in the amorphous layers of a highly oriented
polymer material under external load. Then, according to the barrier theory, groups (clusters) of mac-
romolecules move from one stable state to another. It should be noted that in the absence of load (elas-
tic deformation), the stable states are points with the number of clusters per unit length m/, m)
and mj . The loaded state becomes stable under external load (points 1, 2 and 3 with occupation numbers
m), m) and m{)—Fig. 4. And according to the barrier theory, we can write a balance equation for these

numbers:

dm

d_l‘l = mlW_> + sz(_

A,y o OV + W) +mV +myW,
m

d—; = m3W(7 + szg)

The state of an ideal highly oriented polymer material, consisting only of clusters of one type with
an elastic modulus E, is characterized by the barrier height H (corresponding to the necessary energy
reserve for another rotation of a chain link), the energy gap width U (corresponding to the difference
in energies of two neighboring stable states), the quantum deformation value ¢ and parameter ¥ —the
so-called structure-sensitive element, depending on the type of material (Romanova et al. 2005;
Rymkevich 2018). In practice, U mostly takes negative values. We will measure all quantities H and U
in kelvins as is customary in molecular physics.

In system of equations (1), the change in the number of clusters in the N stable state will be determined
by the number of clusters moving from this state to the right (see Fig. 4) with probability J¥’ | per second,
and the number of clusters moving from this state to the left with probability p7_ per second.
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Let us assume that this system of clusters obeys Boltzmann statistics, according to which the probabil-
ity of a transition from state 1 to state 2 (and similarly the probability from state 2 to state 1) is determined
by the heights of the energy barriers H,, and H,,, respectively:

R, =Fy-exp(-H,,/T),
Py =F,-exp(—Hy /T).,
The number of transitions per second (fraction) is denoted as:
W, =v,-exp(-H_/T),
W =v,-exp(-H_/T)>

where v, is the frequency of approach to the barrier per second.

During the deformation of material, the height of the barrier in the direction of orientation decreas-
es by the value proportional to the square of the mechanical elastic stress (for example, rotation of Kuhn
segment from one stable state to another). Therefore, the value _, is assumed to be equal to:

H_, =H-7x?,

where x stands for the value of elastic deformation (x=0/E;).
As can be seen from Fig. 4, H,_ = H-U +yx>.

As is customary in thermodynamics, it is more convenient to use the reduced energy values.
Thus, we introduce the following notation: H*=H/T, U"=U/T, y=%/T and exp(U)=4 .
Here are the possible variants: 4 <1 (if a more stable state is a more oriented one—which is the most
common in practice), 4~1 (if the energies of these states are approximately the same), and 4>1
(in the opposite case). Therefore:

W, =v,-exp(—H.,)=v,-exp(-H_, /T)=v,-exp(— H/T + yx*) =

* 1 *
=v,-exp(—H " )-exp(yx*) = T—exp(—H )-exp(yx?),
0

W_=v,-exp(-H_)=v,-exp(-H_/T)=v,-exp(—H/T +U/T - yx*)=

* * 1 * *
=V exp(=H")-exp(U")-exp(—yx) =—exp(=H")-exp(U")-exp(~7x").

0

Most polymer materials that are oriented (deformed) in this way differ only in barrier heights,
deformation quantum and number of clusters. That is why it is convenient to introduce the characteristic
relaxation time. In system (1), it is expedient to switch to dimensionless time 7 = ¢/z,;, where 7, =7, -exp(H ")

is the relaxation time, 7,= 1/ is the material constant characterizing the average transition time with

V,
barrier height H — (. Then after introducing the new notation a more compact representation is obtained:

1 . .
R =W, -7y =—exp(=H")-exp(yx")-7,-exp(H') = exp(yx’). (2)
0

1 * * *
R =W -z, =—exp(~H")-exp(U")-exp(~yx)-,-exp(H ) = “
0

=exp(U")-exp(=yx?) = 4-exp(-yx?).
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Further we will take into account that R, -R_=4.
d

We denote the derivative of a certain value X with respect to a dimensionless parameter 7 as X = I
T

Taking into consideration the introduced notation when switching to dimensionless time, we obtain
a system of equations (4) equivalent to system (1):

o
m;=-mR, +m,R_

m, =—m,(R. +R)+mR, +mR. (4)

o
my =-mR_+m,R, .

Taking into account the normalization condition (law of conservation of the cluster number):
my =my +m,+m;. (5)

Here m, is the total number of clusters per length of the given polymeric sample.
The magnitude of the highly elastic part of the deformation can be represented as the difference
between the total & and elastic deformation X :

Epe =8—x=5[m2—mg]+2§[m3—mg]zé'(m2+2m3)—A0, (6)

where A, =8(m? +2m)) is the initial deformation.
Let us express m, from the normalization condition (5) and substitute it into (4), thereby eliminating m/
from the system of equations:

m, =—m, (R, + R )+(my—m, —m)R, +m;R_=—m,(R, —R)+m,R, —m,(2R, +R)
n33 =-mR_+m,R, .
Let us write down the first derivatives of R, and R, :

13+:R+-27/x;c:R+a,where a:Zyx;)c (8)

0

R =-Ra. )

Let us write the first derivative of the highly elastic part of the deformation with respect to the
parameter 7 :

g, = 5[n(1)z+ 2#@} = 5[ {myR, —my (2R, + R)=my(R, —R_)}+2m,R, —2m,R_|= o

= 5[ myR, —my(R, +R_)—m,R_].
Let us write the second derivative of the highly elastic part of the deformation with respect to the

parameter 7 :
00

&, = 5{—{;133(& +R_)+n22 R_}+a[m0R+ —my(R, —R_)+m2R_]}. (11)

o o
After substituting m, and m, from system of equations (7) and performing algebraic transformation
we obtain

00

g, = 5{05[17101{+ —my(R, = R)+m,R_ ][ myA—my(A+ R~ R?)—m, -2A]} . (12)

166 https://www.doi.org/10.33910/2687-153X-2023-4-4-161-175



https://www.doi.org/10.33910/2687-153X-2023-4-4-161-175

D. S. Vavilov, O. B. Prishchepenok, P. P. Rymkevich

In expressions (6) and (10) we select the terms with unknown values and obtain a system of equations
with these two unknowns:

o(m,+2my)=¢,, +A,
0 (13)
S| mR_+my(R, +R)|=6myR, —&,,

Solving system (13), we obtain expressions for m, and m;.

Finally, by means of algebraic transformations and substituting expressions for m, and m;, we obtain
the following second-order differential equation:

. 4 a(R.+R) 2 oo 2Aa
+e |R-R - g |R2+ R+ A+ |-
e e B R, —-R } 5;,{ o R, —R_ (14)
—Smy(2R? + A)+ Ay (R2 + R? + A) + am, -2A—%:0 _
4 - A

Since equation (14) is a differential equation of the second order in time, the solution of this equation
in certain cases leads to an oscillatory relaxation mode. Thus, even in a system with one external degree
of freedom, when the sample is periodically loaded with a certain frequency, interaction between
this external and natural frequency is possible. This fact is supported by experiments on the study
of low-amplitude longitudinal vibrations on highly oriented polymer threads in (Gorshkov 2004;
Stalevich et al. 2005).

Separation of the static and dynamic parts of highly elastic deformation
in the basic constitutive equation

Let us present equation (14) in the following form:
(R, —R)é,+&,[(R.—R ) —a(R,+R )|+
+ghe[(Rf +RE)(R+—R_)+A(R+—R_)+2Aa}= (15)
=0my(2R? + A)(R, —R.)—A,(R? + R* + AR, —R_) -
—20mya A(R, —R_)+2AaA, .

In the sequel, we will separate the static and dynamic components of this equation. Let us separate
the static and dynamic components from the highly elastic part of deformation:

&, =(E"-xX)+(0-y)=¢) +u,

where £°, x°, 6‘26 are static components of full, elastic and highly elastic deformation;
let us denote the dynamic part of highly elastic deformation as ¢ =(0-y).

Taking into account that X =x°+, expressions for R . and R_ take the form:
R, =exp(yx) =exp| y(x* +)” | = (1+2yx"y)-exp| 7(x°) |,

R =A-exp(-yx?)=A-exp [—y(xo + y)z] =(1-2yx"y)- A-exp[—y(xo)z] ‘

Let us introduce the notation: R? = exp[j/(xo)z]; R%=A-exp [—7/()60)2 ];
o

v=2yx"y, a=2yxx=2yxy=V

Physics of Complex Systems, 2023, vol. 4, no. 4 167
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00 0
Now let us transform the factors at Eper Ep and &, in equation (15). Firstly, the factor at g,je :

(R, —R)=R}-(1+2yx"y)-R"-(1-2yx"y) =

(16)
=R"-(1+v)=R*-(1-v)=(R*—R%) +v(R* + R°)

(1)
Secondly, we transform the factor at &, (here and below we will neglect the terms containing v?
and y .y because of a higher order of smallness):

(R,—R)’—a(R,+R)=(R*-R)’ +2((R3)2 —(R?)Z)v—a(Rf(1+v)+

+RY(1-v)) =(R* — R +2((R*)* =(R%)?)v —(R, +R_) . 7
Thirdly, we transform the factor at &,:
(RZ+R*)R, —R )+ AR, —R )+2Aa =
=[(R"?(1+v)? + (R (1=v)? |- (R = R") +V(R* + R") | +
FA[(R =R+ V(R +R%)|+24v =
- [((Rf)2 +(R%)*)+2((R°)? —(RE)Z)VM(RS ~R)+v(R"+R") |+
FA[(RO =R+ V(RO +RY) | +24v = (R + (R ) (R ~R") + (18)

[ 2((RY) = (RY)? ) (R" = R)+ (RO + RM)((R")” +(R"Y’) | +
FA (RO~ RO)+V(R” +R") |+24v =
=((R?) +(R°))(R* = R") + V(R +R9)(3((Rf)2 +(R9)2)_4A)+

+A[(R =R +V(R +R%) | +24v.

Now let us rewrite the left side of equation (15), substituting the resulting expressions (16), (17), (18)

00 o

for the factors at ¢,,, &,
00 O

and y-v as being of a higher order of smallness, we obtain the following on the left side of (15):

— 0 . .. 00
and €, and substituting &), = €3, T 1. Neglecting the terms containing v

e

(R®—RY) 1+ (R°—RC)? )’z{((kg)z +(R9)z)(1ef —R%)+ A(R® —RB)] L+
+Ehe [((R?)2 +(RY)(R = R%)+ A(R! —R?)] + (19)

+e) [v(Rf +R9)(3((Rf)2 +(R9)2)_4A)+ AR’ + RV +2A3} ,
Let us transform the right side of (15):
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Smy(2R> + A)R, —R)—A,(R>+R>+ AYR, —-R_) -

—26mya A(R, = R.)+24ah, = 5m, | 2(R")’ (1+v)* + A]-| (R} —R®)+v(R) +R) |-
—Ao[ (RO (1+v) + (RO (1=v)’ + A]-[ (R =R") +V(R) +R") | -

—285myAV(R® —R%)+24A, v =

= 5my| 2R + A]-(R) =R = Ao [ (R') +(R)’ + 4] (R} - R%)+

+5m, {4(R)’ (R) = R*)+(2(R°) + A)(R] + R")} v -

A, {(2(Rf)2 ~2(RY)(R? ~R)+((R) + (R°)? + 4) (" +R9)}v +

+A, - 2Av—-25my AR — R%) .

Let us consider equation (15), which contains only the dynamic part (we equate the left (19) and
the right (20) parts, leaving only the terms with factors in the form # and v, as well as their derivatives).
In addition, we take into account that the terms with the multiplier A (initial deformation) will also

disappear in the dynamics (this is the damping part). Then we obtain:

(R —R%) 11+ (R = R°Y? 41+ (R® — RO)[ (R%) + (RO + A | o+
+el. [(Rf +R9)(3((R3)2 + (R?)Z)—4A)v + A(R® + ROy + 2A1ﬂ - (21)
=dSm, {4(Rf)2(R2 —R)+ (2R + AR + R?)} v—25myA(R? “R)v.

Study of low-amplitude longitudinal vibrations for highly oriented polymer threads

Let us consider low-amplitude oscillations in the following system: a load of mass m is suspended on
a thread from the polymer sample under study. Initial thread length is denoted as L, S, stands
for the cross-sectional area, o, stress value at equilibrium is designated as o, and o during vibrations,

E, is elastic modulus, Z is vertical coordinate Z (Fig. 5).

WIIIIIII4

[m

ZV

Fig. 5. Load of mass on a suspension (polymer thread) of initial length L
In equilibrium position: mg =o,S, -
In oscillation mode: mg—-0,S,~00S,=mZ; 7 =L-0,
where @ is the relative deformation.
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The value of elastic deformation:

o 0, K 00 o
== t=ix=x"+y-

x_E_O EO EO

Then for the oscillation mode we obtain the following equation:
mLO + yE,S, =0.

Dividing the latter by mL , we bring it to the form:

6+Q%.y=0,
where the following designation is introduced
E,S
02 =207 (22)
O mL

Thus, a differential equation of harmonic oscillations is obtained, where Qo is their frequency.
Here, just as before, we will introduce dimensionless variables, ensuring the universality of the curves
characterizing various polymer samples. For this purpose, we use the notation:

Q,=Q,1,. (23)

Here, as before, 7 = t/ 74, where 7 is the relaxation time. Then the vibration equation takes
the following form:

00 =
0+Q;-y=0. (24)
Now, just as in Section 3, we apply the following notation:
O=u+y;v=2yx"y=Ky; 3:]{;.

Then equation (24) takes the following form:

s+ y+ 02 y=0
Let us substitute and obtain:
00 ] oo QZ
+—v+=2.v=0. (25)
HTEYTR

Analysis of the solution for low-amplitude longitudinal vibrations

Next, we will consider the obtained differential equations: the dynamic part of constitutive equation
(21) and equation of small-amplitude oscillations (25). We will look for solutions of these equations in
the following form:

M=ty -exp(AT),
v =v,-exp(4A7)-
Then equation (21) after substituting these expressions and simplification takes the form:
A2(R) = ROty + AR” = ROV pty +(R® = R)| (R +(RY) + A | gy +
+&), [(Rf + R?)(3((Rf)2 + (Rﬁ))z)—4A) +(R*+R%) A+ 2A/1}V0 =

=M, {4(RS)Z(R£ —R")+(2(R%)* + A)(R? +R%)—2AA(R) —Rﬁ’)}
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Here and further below the notation M, = om,, is used.
To obtain a more compact representation, we use temporary notation for the coefficients at £, and V.
Then the last equation takes the form:

[ (RO =ROA” +(R = RO A+G |ty + Lvg + NAv, =0, (26)
where G = (R — Rﬁ’)[(kf)2 +(R) + A]

L :g;;e[(zef + RO (3((RO + (RY?)-44)+ (R +R9)A}—
—M,[ 4R (R~ R%)+(2(R°)* + A)(R? +R®) | =

p [3(1@3 +RO[ (R +(RYY —Aﬂ ~M, [Rf [6(R"Y +(RY)? - Aﬂ

N=24g) +2AR)-R")M,-
Now consider equation (25), which after substituting solutions and simplification takes the form:
K22u0+(/12+§~2§)-v0:0. 27)
Now we, therefore, have a system of algebraic equations (26) and (27) with respect to J .
We will take into account that in practice we are dealing with polymeric materials for which:
R = exp[y(xo)z] >1; R = A-exp[—y(xo)z] <1; A<1.
Then the coefficients L, G and N in the equation take the form:
L=¢ [3(1{3 +RO)[(RY)? +(R - Aﬂ —M, [Rf [6(RY +(RY)* - Aﬂ _
— &% 3(R") =M, -6(R")} =3(R") (&), —2M,)
G=(R"=R)[ (R’ +(R% +4]=(R’)
N =24 +24(R - R*)M, =24c". +2AM R".
Let us rewrite equation (26):

[Rfﬂ,z +(RO A+ (Rf)3] o +3(RCY (2, —2M )y +2A(gl, + M RO AV, =0
Let us divide everything into (R? )3:

A Ay 380 —aMyw + 24— | e |,
(R?)Z R? 0 he 070 O(R?)z 0 R_(:

A
Let us introduce the notation: 7= W' Then we obtain:

0
[(R?)2 n*+ an + 1] My + 3(5,?6 —2M v, +2A4vyn (Mo +%J 0. (28)

+
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Let us consider equation (27). Let us divide it by (R?)4 and also use the notation 7 :% .
Then we obtain: (R))
QZ
2 _
KU Mo+ (77 + (RO)4} =0. (29)
Divide equation (28) by equation (29) and obtain:
0 &
3, —2M))+2An| M, +-¢
(RO Ryt T2 Mo 50)
Kn? n?+ QS
(R))*
Let us introduce the notation:
3 — M) =w : Ene QS — 31
Then equation (30) takes the form:
((R?)Zﬂz +Rn +1)-(772 +7r) = Kn? (v +on).
After that, applying algebraic transformations, we obtain:
(R°Y’1* +(R® =Ko’ +(1+ 2(R°)’ =Ky )7 + ROz + 7 = 0.
Dividing everything by (R?)2 , we obtain:
1 1
4 0\2
n'+ (R°)2 (R —K(p)n +— (R°)2 (1+7Z'(R ) Kt//)n +—— RO n+—— (R°)2 =0. (32)

At this stage, the equation has been obtained, which should have four roots basing on algebraic
reasons. We want to find out the conditions for beats occurring in the system under consideration. Beats
occur when the system and an external influence have close oscillation frequencies. In this case,
the imaginary parts of the roots of the equation are also close in value (we will assume they are equal
to simplify the transformations). Then we assume that it is possible to represent equation (32)
as the product of two polynomials of the following form:

(772 +2ﬂ77+a)2)(772 +2an +a)2) =0.
Opening the brackets and performing algebraic transformations, we obtain:
n*+2(a+ )’ + Qw* +4af)n* + 20 (a+ B)n+w* =0. (33)

Comparing the corresponding coefficients of the same powers in equations (32) and (33), we obtain
a number of relations. For coefficients of free term, we obtain:

4 T
(R"Y -
Also, it should be noted that when substituting the previously introduced notation (31) for 7 = %
into (34), we obtain the expression for ’: ( +)
o= (35)
(R?Y’

Next, let us equate the coefficients at the first degree of 77:
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20 (a+ B) = %. (36)

Let us divide (34) by (36) and express the sum of the attenuation coefficients (& + f3):

1 5p0 e
——w*R'=—. RO=—. 37
a+pf 2(0 X 2(Rf)3 X 2(Rf) (37)

Let us equate the coefficients at 7 :

20° +4af} =

(R°)2 (1+7Z'(R0)2 Kl//)

Now using algebraic transformations and substituting expressions for 7 (31) and @* (35) and then
for K =2yx" and ¥ (31), we obtain:

N ~ -~ \2
1 20,  QF Ky 1 Q Ky _

40[ﬂ= 1— 0+ 0 — = 1—_0
(RS)Z[ R (Rf)ZJ (R)? (Rf)Z[ RSJ ®y "

(8, el -2M,)
“®y| ' (RY?

Then multiplication of coefficients & and £ is equal to

~ \2
Bz [PﬁJ T ) (38)

4(R°)? R’ 4(R%Y

Now we have expressions for sum (37) and product (38) of @ and f. The coefficients & and f can
be easily determined using this system. In (Romanova 1990), a program was proposed for calculating
these values.

Let us equate the coefficients at 7,°:

1
(R?)®

Taking into account the expression (& + ) (37) we obtain:

(R —K(o) 2a+p).

(R{’)Z (R'~Kg)=2(a+ )= W
Then after dividing by (R°)* we obtain:
Q,=R"-Kop.
Taking into account (31) and K =2yx° we have:
B 20 £0
QO:Rf—KgD:Rf—27/x°-2A[MO+R”§}:R+O—4A;/x { RO] (39)

It can be shown graphically that this equation may have one solution (corresponding to one type
of beating), two solutions in some cases (corresponding to two possible loads at which beating occurs),
and may also have no solutions (no beating occurs).
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Physical explanation for the presence of beats in a mechanical system
“with one degree of freedom”

On the one hand, elastic oscillations occur in the system, on the other hand, according to the barrier
model, oscillations of the occupation numbers of energy levels take place. Thus, another vibration mode
arises, associated with highly elastic deformation, since highly elastic deformation is determined
by the occupation numbers of the corresponding states, which obeys to vibrational relaxation.
It means that the system tends to be “Boltzmann distributed’, while under the influence of an external
mode this process occurs in an oscillatory mode. At close frequencies the beat effect is observed.

Conclusions

1) The difference between highly oriented polymer materials and low molecular weight compounds
is that they have highly elastic deformation associated with the nature of the supramolecular
structure. The accepted model is the barrier theory;, i. e. the presence of stable states depending
on the spatial orientation of clusters of macromolecules. During the transition from one state
to another a deformation quantum is released or absorbed.

2) Under the influence of an external load, the occupation numbers 7y begin to change periodically
with a certain natural frequency.

3) When the frequencies of the external load and the natural frequency coincide, the beating effect
is observed.

4) Thus, the hidden degree of freedom (see rheological model) is the occupation number of energy
states.
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Abstract. This paper investigates the influence of the amplitude, frequency, and damping of the applied field
on the maximal Lyapunov exponents and chaotic dynamics in the bulk antiferroelectric (AFE) system.
Numerical simulations are conducted in three parts. First, Wolf’s algorithm calculates the Lyapunov exponents
with varying frequencies and a constant amplitude. The second part varies the amplitude while keeping
the frequency constant. Two sets of data are generated for small (g = 0.01) and large (g = 0.3) damping values.
In the third part, selected parameters produce phase portraits based on the positive and negative Lyapunov
exponents using the fourth-order Runge—Kutta method. The results show that the Lyapunov exponent
identifies chaotic and periodic regimes with small damping, but this becomes less evident with large damping.
The study also demonstrates that manipulating the applied field parameters enables control over chaotic
and periodic responses in the bulk AFE system.

Keywords: Lyapunov exponents, antiferroelectrics, ammonium dihydrogen phosphate, chaos, nonlinear,
periodic response

Introduction

There are various methods to characterize the nonlinear and chaotic dynamics of physical systems.
For example, one method involves plotting the power spectrum versus finite applied frequencies, where
the nonlinear properties are revealed through the structures, positions, and intensities of the spectrum
peaks (Dykman et al. 1988). The other methods include plotting phase portraits, Poincaré sections, and
calculating the Lyapunov exponents (Baker, Gollub 1996; Goldstein et al. 2002; Marion, Thornton 1995;
Strogatz 2015). In the phase portraits method, the shape of the curves and their overlap indicates the
periodic responses of dynamical systems to external driving forces. Poincaré sections, on the other hand,
are periodic snapshots of phase portraits, providing further insight into the behavior of nonlinear systems
through the distributions and overlap of points in the 2D plots generated by these sections. The Lyapunov
exponents method involves calculating the rate of exponential divergence of neighboring phase trajectories.
The Lyapunov exponents greater or less than zero serve as hallmarks of chaotic or periodic responses,
respectively, of the system states with respect to driving forces. Among these methods, the Lyapunov
exponent is an important indicator for understanding the chaotic dynamics of physical systems.
By combining these methods, a clearer picture of the dynamical responses of the system can be obtained.
In this paper, we adopt a combination of methods by calculating the Lyapunov exponent and utilizing
phase portraits to analyze selected parameters.
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There are numerous methods available to determine the Lyapunov exponents. Some of these methods
include the fast Lyapunov indicator, which computes the average of the largest Lyapunov exponent
obtained from orthonormal basis tangent vectors in the phase space of the dynamical system (Lega et
al. 2016). Ulam’s method is used to calculate the maximal Lyapunov exponent for one-dimensional
systems under small perturbations (Benettin et al. 2018). Another method involves calculating the finite
size Lyapunov exponent based on averaging the finite amplitude growth rate of the dynamical physical
system (Meunier, LaCasce 2021). Wolf’s algorithm is employed to estimate the Lyapunov exponents
for analytically defined time series model systems (Wolf et al. 1985). In this paper, we adopt Wolf’s
algorithm to calculate the Lyapunov exponents of bulk antiferroelectrics (AFE) (Wolf et al. 1985).

The research presented in this paper is an extension of (Lim 2022), focusing on investigating
the effects of frequency, amplitude of the driving field, and damping in antiferroelectrics on the maximal
Lyapunov exponents and nonlinear chaotic dynamics observed in the bulk antiferroelectric (AFE) system
during its first ordered phase. The numerical simulations conducted in this study are divided into three
parts. In the first two parts, Wolf’s algorithm is utilized to calculate the Lyapunov exponents of the bulk
AFE system. The first part involves varying the frequency of the applied field while keeping the amplitude
constant. The second part focuses on varying the amplitude of the applied field while keeping the frequency
constant. For each set of the selected amplitude and frequency of the applied field, two sets of numerical
data are generated to account for different damping conditions. Specifically, one set corresponds
to a small damping value of g = 0.01, and the other set corresponds to a large damping value of g = 0.3.

In the third part, a few sets of parameters are selected from the first two parts, corresponding
to positive and negative values of the Lyapunov exponents, which are then used to generate
the corresponding phase portraits. The method employed in the third part closely resembles
that of (Lim 2022), where numerical simulations are conducted using the fourth-order Runge-Kutta
method for a specific material, such as ammonium dihydrogen phosphate (ADP). In contrast
to the approach in (Lim 2022), where the chaotic dynamics are explored through the generation
of numerous phase portraits, we utilize the Lyapunov exponent as an indicator to distinguish between
chaotic (positive) and periodic (negative) regimes.

Formalism for nonlinear dynamics

The details of the formalism can be found in (Lim 2022). The focus of the studies here is an extension
of (Lim 2022), where we adopt Lim’s dimensionless AFE oscillatory equations of motion, as shown
in equations (1):

dq d 3 2
—+g—=-"2(y +7)gq+4(q +3qr°)—
at Car (v+r)e (q 1 ) (1a)

6(q5 +10g°7” +5qr4)+e0 sin (27 ft)

dzl" dl" 2 3 4 2.3 5
F+g5=—21r+4(3q r+r )—6(5q r+10g°r" +r ) (1b)

The symbols 7, e (= e, sin(2mft)), g, r, ¥, t, and g represent the reduced or dimensionless temperature,
applied Maxwell field, normal displacement, staggered displacement, interaction constant of sublattices,
time, and damping, respectively. From equations (1), we choose e and g as the control parameters of the
system for numerical simulations. In this paper, we fix the values of 7 to be approximately —3.346457 x 1073
and y to be approximately 1.2332677 x 107* as in (Lim 2022). The selected damping constants are 0.01
and 0.3.

Equations (1) are nonautonomous differential equations due to the explicit time dependence. In order
to perform numerical simulations using Wolf’s algorithm, these equations are transformed into autono-
mous differential equations (Baker, Gollub 1996; Boyce, DiPrima 2001) by introducing the following
substitutions:

dx, dq dx, dr
R e R Rl (2a)
a
dx,
X, =—==2nf.
i f
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This yields six coupled first-order differential equations:

d _dg _ (2b)
49
dt dt
a _dr_ . (20)
=—=x,
dt dt
dx,
3 =x =2rf, (2d)
5 Y=
ﬁ:—gx —2(1;/ +T)x +4(x3+3xx2)
dt 4 1 1 17v2 (2e)
—6()615 +10x'x3 +5x1x§)+e0 sin(x;, ),
% =—gx, — 27X, +4(3xfx2 +x§)
2f
—6(5x14x2+10x12x;+x§), (21)
ax, _
e (2¢)

Numerical simulations

In the numerical simulations, we adopt the AFE’s natural frequency, fo, to be approximately 0.021336524,
and the coercive field of the system, e, to be approximately 0.41658, as stated in (Lim 2022).
The numerical simulations are divided into three parts. The first part is the Lyapunov exponents,
A, versus the frequency, f, of the applied field. The second part is the Lyapunov exponents, 1 , versus
the amplitude of the applied field, e,. In the third part, we investigate the relations between the Lyapunov
exponents and the AFE order parameter responses based on a few selected sets of parameters. The selec-
tions of these parameters are mainly based on the results obtained in the first and second parts.
To eliminate transient effects, the first 30 cycles are excluded when generating the numerical data.
The Lyapunov exponents in the first and second parts are obtained from the 31% to the 200" cycles.

Lyapunov exponents versus frequency of the applied field

The first part involves calculating the Lyapunov exponents, 1 , of the AFE by varying the frequency
J/, while keeping the amplitude, e, and damping constant, g, fixed at certain values. Wolf’s algorithm
is utilized to compute the four Lyapunov exponents for g, dg/dt, r, and dr/dt, corresponding to x X Xy
and x, in equations (2). Only the largest Lyapunov exponents, A , corresponding to g or x, are plotted
in 2D graphs. In the calculations, for each selected fixed e, value, two curves are generated: one with
a small damping constant, g = 0.01, and another with a large damping constant, g = 0.3. The numerical
curves for A versus f, with e, fixed at 0.01e,. and 0.9e,, are plotted in Figure 1, while the curves e, fixed
at 2.0e. are plotted in Figure 2. Furthermore, the curves with e, fixed at 249¢_. are plotted in Figure 3.
In Figures 1 and 2, the frequency, f, varies from 0.025 f, to 10.0 f;, while in Figure 3, the frequency, f,
varies from 0.25 f, to 100.0 f;.
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The Lyapunov exponents, A , versus frequency f with the amplitude fixed at e = 0.01e_, are repre-
sented by curves C, for g = 0.01 and C, for g = 0.3, as shown in Figure 1. The frequency, f, varies
from 0.025 f; to 10.0 f. The curves C, and C, remain relatively at around 4.074 and 3.87, respectively,
as the frequency varies. However, the numerical data for C, and C, exhibit slight fluctuations within
the ranges [4.073846, 4.074086] and [3.870382, 3.870610], respectively. These small fluctuations disap-
pear when C, and C, are plotted in the same graph. Generally, C, is approximately 0.204 higher than C.,.

The Lyapunov exponents, A , versus frequency, f, with the amplitude fixed at e, = 0.9¢, are repre-
sented by curves C, for g = 0.01 and C, for g = 0.3, as shown in Figure 1. In the frequency range f € [0.025f,,
1.925f], curve C, is greater than C,, and both curves have small fluctuations. For frequencies in the range
f € [1.925f,, 3.55f], curve C, demonstrates larger fluctuations within the range [3.6960336,1.2019837].
For frequencies greater than 3.55f0, curve C, exceeds C,, except for the range f € [6.5f0, 7.25fo].

The Lyapunov exponents, /1q, versus frequency f with the amplitude fixed at e = 2.0e, are repre-
sented by curves C_ for g = 0.01 and C_ for g = 0.3, as shown in Figure 2. The frequency, f, varies from
0.025 f; to 10.0 ;. In general, curve C, is greater than C,, and both curves exhibit fluctuations throughout
the entire range of the graph, i. e., f € [0.025f,10.0f]. For curve C,, the first data point of A_is negative
at f= 0.025f,, while the remaining points are positive. Curve C,, on the other hand, exhibits periodic
windows, with notable ones occurring at f € [0.025f0, 1.125f0],fe [5‘875f0, 5‘9f0], andfe [8.725f0, 10.0f0].

The Lyapunov exponents, )Lq, versus frequency, f, with amplitude fixed at a large value, i. e., e,=249.0e,
are represented by curves C, for g = 0.01 and C, for g = 0.3, as shown in Figure 3. The frequency, f, varies
from 0.25 f; to 100.0 f. In general, curve C, is higher than C, within the range f € [0.25f, 43.5f,]. Curve
C, exhibits prominent fluctuation features in the range f € [43.5f, 7.375f,]. For frequencies greater than
7.375fo, curve C, tends to be higher than C, and demonstrates a trend of linear increment with respect
to e,. Curve C, does not exhibit periodic windows, while curve C, exhibits periodic windows.

By comparing curves C, to C; in Figures 1 to 3, we observe that the Lyapunov exponents, 1,
for g = 0.01 are generally greater than those for g = 0.3, particularly for small e, and fvalues. Most of the
periodic windows, where A_< 0, are present in the curves associated with the larger damping constant,
g=0.3, namely C, and C,.

Lyapunov exponents versus amplitude of the applied field

In the second part, we use the same Wolf’s algorithm as in the first part to compute the Lyapunov
exponents for the AFE system by varying the amplitude of the applied field, e, while keeping its fre-
quency, f, fixed at several values. The calculated values of 1_are shown in Figures 4 and 5. For each se-
lected fixed fvalue, two curves are generated: one with a small damping constant, g = 0.01, and another
one with a large damping constant, g = 0.3.

Co
4 '%Cu
C1o
3 4 Cy
Aq
2 .
C
1 | L“-M'MWW‘?M\_’
N C11
D Y —— | T [ (
= ‘10
C 1 2 3 Gy 4
-1 €

Fig. 4.1 versus e for f< . C, (f= 0.5/, g =0.01), C, (f= 0.5f, g = 0.3), C,, (f= 0.04f;, g = 0.01),
C, (f=0.04f, g =0.3)
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The Lyapunov exponents, A , versus amplitude, e;, with the frequency fixed at f = 0.5 f;, are represented
by curves C, for g = 0.01 and C, for ¢ = 0.3 in Figure 4. Additionally, the A_values with the frequency fixed
at f = 0.04f, are represented by curves C,, for g = 0.01 and C,, for g = 0.3, as shown in Figure 4.
The amplitude, e, varies from 0.025¢_. to 10.0e.. In Figure 4, all curves exhibit discontinuities near
the value of e , approximately 0.41658. At this point, 1 decreases discontinuously from higher to lower
values as e, transitions through e . from low to high values. The curves associated with smaller damping

0
constants are generally higher than those with larger damping. Specifically, curve C, is greater than C

and C | is greater than C ,. When ¢ > e, all curves exhibit small fluctuations around nearly hOI‘iZOI‘ltlé(l)l
lines, and C, and C, showing negative values.

The Lyapunov exponents, )Lq, versus amplitude, e, with the frequency fixed at f = 5.Of0, are repre-
sented by curves C , for g = 0.01 and C,, for g = 0.3, as shown in Figure 5. The amplitude, ¢, varies from
0.025¢_.to 10.0e,. In Figure 5, both C , and C, exhibit a discontinuity near the value of e_, approximate-
ly 0.41658. However, the discontinuity in C , is less severe and exhibits a rounded structure as e, transi-
tions through e_. from low to high values. The curves associated with smaller damping constants are
generally higher than those with larger damping constants. Specifically, curve C,, is greater than C,,.
When e,> e curve C exhibits small fluctuations around nearly horizontal lines. In contrast, curve C,
exhibits larger fluctuations, including a few periodic windows corresponding to the parts of C,, located
below the horizontal axis.

Order parameter responses in bulk AFE

The third part is based on the results obtained from the first two parts. A few sets of values for fand
e, are chosen to generate the phase portraits of the AFE system using the fourth-order Runge-Kutta
method, following the approach outlined in (Lim 2022). The selection of fand e, values is made with
the aim of observing the relations between )Lq and the responses of the AFE to the applied electric field.
For the purpose of comparison, two sets of numerical data are generated for each selected fand e, com-
bination: one set corresponds to a small damping value of g = 0.01, and the other set corresponds
to a large damping value of g = 0.3.

The calculated data for each set of f, e, and g values are plotted in four figures. (a) shows the plot
of the dimensionless applied sinusoidal electric field, e, and the dimensionless normal displacement,
g, as functions of dimensionless time, t. (b) shows hysteresis features, i. e., the dimensionless normal
displacement, g, versus the dimensionless applied electric field, e. (c) shows the phase portrait
of the system, namely, the time derivative of the dimensionless normal displacement, dg/dt, versus the
dimensionless normal displacement, g. Lastly, (d) exhibits the states of the AFE system in the dimension-
less phase space plotted against dimensionless time, ¢, in a three-dimensional curve. The duration
for the numerical results shown in (a) to (d) is four cycles, specifically from the 31* to the 34* cycles.

Fore,=1.0x 10?e.=4.1658 x 10" and f= 4.0 x 107 f, ~ 8.5346 x 107°, the AFE responses are shown
in Figure 6(a) to 6(d). The curves corresponding to the damping constant g, equalling 0.01 and 0.3,
overlap with a difference of approximately 2% between the two sets of numerical data. The maximal
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Lyapunov exponent for the g = 0.3 case is positive, approximately 3.58144. However, the computation
of A_ for the g = 0.01 case encounters numerical simulation overflow, preventing its generation.
The responses of the AFE exhibit characteristics close to periodic responses. This can be observed
in Figure 6(a), where the curves resemble sinusoidal curves and are in phase with e. Furthermore,
the curves in the four cycles overlap, resulting in a linear line through the origin in Figure 6(b) and
an elliptical shape in the phase portrait shown in Figure 6(c). For a particular set of ¢, and f values,
the magnitude of the order parameter response is proportional to the area occupied by the correspond-
ing phase portrait, or the volume V_in (dq/dt, q) in phase space. The area occupied by the ellipse
in Figure 6(c) is estimated as V_ ~ 1.025 x 10"?, which is extremely small due to the smallness of the ap-
plied e, and f values. The smooth curve in Figure 6(d) further elaborates the elliptical phase portrait
shown in Figure 6(c).
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Fig. 6. AFE response for f= 4.0 x 107, ¢, = 1.0 x 10 ?¢_, g = 0.3 and 0.01. (a) e and g versus ¢,

where e is represented by the black curve and g is represented by the red curve. (b) g versus e. (c) dq/dt versus q.

(d) dqg/dt versus q versus t.

For e, = 0.9¢.~ 0.374922, f= 2.275 f, ~ 0.048541, and g = 0.3, the AFE responses are shown in Figure
7(a) to 7(d). The maximal Lyapunov exponent is positive and approximately 3.477528. In Figure 7(a),
the curves of e and g exhibit a slight phase difference. The g curve shows wavy deviation on triangular
waves. The hysteresis loops and corresponding phase portraits for four cycles of e overlap, as depicted
in Figures 7(b) and 7(c). Figure 7(c) shows that the AFE responses occupy a small volume in phase space,
estimated at V =~ 0.0105. The wavy pattern observed in each cycle of the curve in Figure 7(d) further

elaborates the fq‘lon—elliptic irregular wavy cloud shape of the phase portrait shown in Figure 7(c).
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Fig. 7. AFE response for f'= 2.275f, ¢ = 0.9¢, g = 0.3. Aq = 3.4775278. (a) e and g versus t, where e is represented
by the black curve and ¢ is represented by the red curve. (b) g versus e. (c) dq/dt versus q. (d) dg/dt versus g versus t.

For e, = 0.9¢.~ 0.374922, f = 2.275f, ~ 0.048541, and g = 0.01, the AFE responses are shown in Figure
8(a) to 8(d). The maximal Lyapunov exponent is positive and approximately 1.185748. In Figure 8(a),
e and ¢q exhibit a slight phase difference. The pattern of the g curve shows an irregular wavy pattern
on each cycle, indicating non-periodic behaviour. The hysteresis loops and corresponding phase portraits
for four cycles of e do not overlap, as shown in Figures 8(b) and 8(c). Figure 8(c) shows that the respons-
es of AFE occupy a volume V.~ 244 in phase space, which is about 232 times larger compared
to the volume in Figure 7(c). The presence of additional irregular loops winding around the attractors
on both sides in each cycle depicted in Figure 8(d) further elaborates the irregular and non-overlap
dumbbell shapes of the phase portrait displayed in Figure 8(c).
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by the black curve and ¢ is represented by the red curve. (b) g versus e. (c) dq/dt versus q. (d) dg/dt versus g versus t.

For e = 0.9e.~ 0.374922, f = 7.05 f,~ 0.150422, and g = 0.3, the AFE responses are shown in Figure
9(a) to 9(d). The maximal Lyapunov exponent is positive and approximately 0.380776. In Figure 9(a),
e and g are out of phase, with g leading e nearly m/4. The pattern of the g curve exhibits slightly dis-
torted triangular waves. The hysteresis loops and corresponding portraits for four cycles of e overlap,
as shown in Figures 9(b) and 9(c). Figure 9(c) demonstrates that the responses of the AFE occupy a vol-
ume V ~ 3.22 in phase space. The pattern observed in each cycle of the curve in Figure 9(d) further
elaborates the dumbbell shape of the phase portrait displayed in Figure 9(c).
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For e = 0.9¢. ~ 0.374922, f = 7.05f,~ 0.150422, and g = 0.01, the AFE responses are shown in Figure
10(a) to 10(d). The maximal Lyapunov exponent is positive and approximately 0.826725. In Figure 10(a),
e and q are out of phase. The pattern of the g curve shows an irregular wavy pattern on each cycle, indi-
cating non-periodic behaviour. The hysteresis loops and corresponding phase portraits for four cycles
of e do not overlap as shown in Figures 10(b) and 10(c). Figure 10(c) shows that the responses of AFE
occupy a volume V, ~ 2.92 in phase space, which is slightly smaller than the one shown in Figure 9(c).
The irregular wavy curve in Figure 10(d) further elaborates the irregular shape of the phase portrait
displayed in Figure 10(c).
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Fig. 10. AFE response for f = 7.05f,, ¢ = 0.9¢_, g = 0.01, and A _ = 0.82672474. (a) e and q versus ¢, where e is represented
by the black curve and g is represented by the red curve. (b3 q versus e. (¢) dg/dt versus q. (d) dq/dt versus q versus t.

For e = 2.0e.~ 0.83316, f = 0.025 f ~ 5.334131 x 10™, and g = 0.3, the AFE responses are shown
in Figures 11(a) to 11(d). The maximal Lyapunov exponent is negative and approximately —0.207926.
In Figure 11(a), e and g are out of phase. The g wave exhibits branching spikes on the first and third
quadrant edges of every cycle, indicating periodic behaviour. The hysteresis loops and corresponding
phase portraits for four cycles of e overlap, as shown in Figures 11(b) and 11(c). Figure 11(c) exhibits
inward spiral curves towards the attractors located at both sides, corresponding to g =~ +0.89.
The responses of the AFE occupy a volume V ~2.71in phase space. The anti-symmetric dumbbell-shaped
4-cycle curve spiraling towards the attractors on both sides for each cycle depicted in Figure 11(d) further
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elaborates on the pattern observed in the phase portrait displayed in Figure 11(c).
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Fig. 11. AFE response for f= 0.025f, ¢ = 2.0e, g = 0.3, and A _= -0.20792619. (a) e and q versus ¢, where e is represented
by the black curve and g is represented by the red curve. (bq) q versus e. (c) dg/dt versus q. (d) dq/dt versus q versus t.

For e = 2.0e.~ 0.83316, f = 0.025f ~ 5.334131 x 10 and g = 0.01, the AFE responses are shown
in Figure 12(a) to 12(d). The maximal Lyapunov exponent is negative and approximately —0.00414195.
In Figure 12(a), e and g are out of phase. The g wave exhibits intense branching oscillations damped
towards the peaks of the first and third quadrant of every cycle, indicating periodic behaviour. The hys-
teresis loops and corresponding phase portraits for four cycles of e overlap, as shown in Figures 12(b)
and 12(c). Figure 12(c) illustrates intense inward spiral curves towards the attractors located at both
sides, corresponding to g ~ +0.89, The responses of the AFE occupy a volume V, ~4.12in phase space,
which is approximately 1.52 times larger than the one shown in Figure 11(c). The anti-symmetric dumb-
bell-shape 4-cycles curve, spiraling towards the attractors on both sides for each cycle in Figure 12(d),
further elaborates on the pattern observed in the phase portrait displayed in Figure 12(c).
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Fig. 12. AFE response for f= 0.025 f,, ¢, = 2.0e, g = 0.01, and A = -0.0041419531. (a) e and g versus £, where e
is represented by the black curve and g is represented by the red curve. (b) g versus e. (c) dq/dt versus q.
(d) dq/dt versus q versus t.

For e = 249.0e_~ 103.7284, f = 25.5f0z 0.544081, and g = 0.3, the AFE responses are shown in Figures
13(a) to 13(d). The maximal Lyapunov exponent is negative, approximately —0.218945. In Figure 13(a),
e and g are slightly out of phase. The pattern of the q curve exhibits slightly distorted triangular waves
with two branching peaks and troughs. It is periodic, as indicated by the overlap of the hysteresis loops
and corresponding phase portraits for four cycles of e shown in Figures 13(b) and 13(c). Figure 13(c)
shows that the responses of the AFE occupy a volume V ~ 95.54 in phase space. In Figure 13(d), the
curve exhibits two windings around each attractor in each cycle, further elaborating on the dumbbell-
shaped loops with extra windings on both sides of the phase portrait shown in Figure 13(c).
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For e = 249.0e .~ 103.7284, f= 25.5 f, ~ 0.544081, and ¢ = 0.01, the AFE responses are shown in Figures
14(a) to 14(d). The maximal Lyapunov exponent is positive, approximately 3.230842. Figures 14(a) to
14(d) exhibit similar characteristics to Figures 8(a) to 8(d) and Figures 10(a) to 10(d), with the exception
that the responses of the AFE occupied a large volume, V =~ 197.24, in phase space, which is approxi-
mately double compared to the one shown in Figure 13(c).
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(d) dqg/dt versus q versus t.

Conclusions

The results of the first part indicate that, for small amplitudes (e)) and frequencies (f) of the applied
field, the Lyapunov exponents (1 ) for g = 0.01 are greater than those for g = 0.3. Additionally, most
of the periodic windows, correspondmg to A, <0, are observed in curves with a large damping constant
(g=0.3).

In the second part, it is observed that as the amplitude of the applied field (e,) varies from low values
and sweeps through e_ to high values, the Lyapunov exponents (1 ) decrease discontinuously at e ~ e,
regardless of the frequency. Furthermore, for applied fields with low frequencies (f< 0.5f)) and amplitudes
greater than the cohesive field (e, > e ), in a system with large damping (g = 0.3), the Lyapunov exponents
(Aq) are negative.

The results from the third part demonstrate that the time-varying dimensionless normal displace-
ments (g) are distorted compared to the sinusoidal applied field (e). It is observed that, for the negative
Lyapunov exponents, the trajectories in phase space spiral towards attractors regardless of damping.
The magnitude of the system’s responses is proportional to the volume in phase space (Vq) occupied by
the trajectories.

In most cases, V, is smaller for large damping and larger for small damping, as shown in Figures 6(c)
to 8(c) and 11(c) to 14( ). For cases near e, the relative responses exhibit large fluctuations with respect
to frequency. For example, when ¢, = 0.9¢_ and f'= 2.275f;, V_ for large damping (g = 0.3) in Figure 7(c)
is approximately 232 times smaller ‘than v, for small dampmg (g=0.01) in Figure 8(c). Conversely, when
e,=0.9¢.and f=7.05f, V, forlarge dampmg in Figure 9(c) is approximately 1.1 times larger than V_ for small
dampmg in Figure 10(c). fn general, large damping tends to suppress chaos when e is not close to e.

For cases with large damping and positive A , the orbits of trajectories exhlblt significant overlap
across consecutive cycles of the driving field, as shown in Figures 6(c), 7(c), and 9(c). When Aq is negative,
the responses are periodic, and the orbits of trajectories spiral towards attractors, particularly for mod-
erate values of amplitude values (e. g., e, =2.0e.) and low frequencies (e. g., f = 0.025f,). However,
this effect is less obvious for large value of amplitude values (e. g., e, =249.0e_) and high frequencies
(e. g., f=255f).

As a summary, the numerical results demonstrate that periodic responses occur when A < 0, as shown
in Figures 11 to 13. When e, and fare very small, irrespective of the damping, A_is positive, leading to
quasi-periodic responses. For moderate values of ¢, and f, when A_> 0, the responses with damping
g = 0.01 exhibit chaotic behaviour, as shown in Flgures 8, 10, and 14, while the responses with damping
g = 0.3 appear quasi-periodic, as indicated by the overlapping hysteresis loops and phase portraits
in Figures 7 and 9. Larger damping in the AFE system reduces the chaotic response and the density
of chaos. Consequently, large damping can regulate response to the driving field, even though the system
is chaotic.
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Based on the comprehensive numerical results, we conclude that, for the antiferroelectric system
in its first-order phase, the method of calculating the Lyapunov exponent and plotting phase portraits
proves to be an efficient approach for identifying the regimes of amplitude and frequency of the applied
field that lead to periodic and chaotic responses, particularly in the case of small damping. This approach
offers an alternative to studying chaotic dynamics through multiple phase portraits (Lim 2022).
The numerical simulations confirm that by manipulating the amplitude, frequency, and damping parameters
of the AFE system, it is possible to control and regulate the occurrence of chaotic and periodic responses
in the bulk AFE system. Utilizing the largest Lyapunov exponent as an informative indicator for
characterizing the system’s nonlinear behaviors proves to be an effective approach.
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Abstract. Structure and optical properties of amorphous semiconductor nanocomposite TiO,<Ag> films
prepared by ion-plasma RF magnetron co-sputtering of a TiO, and Ag target only in the argon atmosphere
are studied. Matrix of TiO,<Ag> films is amorphous with inclusions of isolated 3—4 nm sized silver
nanoparticles. The optical transmission spectra have a sharp edge of fundamental absorption band at ~ 300
nm, which is formed by direct and indirect allowed optical transitions. The band gap of the TiO,<Ag> films
increases with the Ag concentration due to some ordering of the matrix. The absorption band is observed
in the visible region of the spectrum due to the effect of local surface plasmon resonance absorption (LSPR)
on silver nanoparticles. The LSPR intensity increases with the silver concentration, and the maximum
of the absorption band, depending on the Ag concentration, is located in the region from 455 to 488 nm.

Keywords: ion-plasma sputtering, amorphous plasmon semiconductor nanocomposites TiO,<Ag>, silver
nanoparticles, structure, optical properties, surface plasmon resonance absorption

Introduction

Titanium dioxide films (TiO,), a polymorphic wide-gap semiconductor material (anatase, rutile,
brookite), are widely used in various fields: from biomedicine to solar energy (Banerjee et al. 2015;
Cao et al. 2016; Ghann et al. 2016; Kulkarni et al. 2015; Pakdel et al. 2013). This is due to the generation
of high-energy electrons in TiO, under the action of near-UV radiation. In recent years, many studies
have been aimed to expand of the functional properties of these films by embedding elements of different
chemical nature and creating composites on their basis. Special attention is paid to composite films based
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on TiO, with inclusions of isolated nanoparticles of noble metals such as Ag and Au (Prakash et al. 2016;
Wodka et al. 2010; Yu et al. 2017; Zhao et al. 1996). In such wide-gap semiconductor nanocomposite
TiO,<Ag> and TiO,<Au> films, an absorption band is observed in the visible region of the spectrum due
to local surface plasmon resonance (LSPR) on metal nanoparticles. Such films are of significant interest
for the physics of plasmon phenomena and have important applied significance, in particular, for improving
the photocatalytic and optical properties of TiO, films (Bueno-Alejo et al. 2017).

The semiconductor composite TiO, films with inclusions of Ag and Au nanoparticles are obtained
by various chemical and physical methods. For example, the sol-gel method, PLD, photoreduction
treatment, ion doping and magnetron ion-plasma DC/RF co-sputtering (Ghidelli et al. 2020; Navabpour
et al. 2014; Ozimek et al. 2016; Pan, Heagy 2019; Usha et al. 2016; Yuan et al. 2017; Zada et al. 2017).
Ion-plasma RF magnetron co-sputtering has a number of advantages over other methods. This is due to
the possibility of obtaining continuous and homogeneous composite films and the possibility to be well
integrated into the planar technology of electronic device manufacturing (Prikhodko et al. 2014). However,
in the technology of obtaining TiO, films with isolated Ag and Au nanoparticles and with the LSPR effect,
the sputtering is carried out in the atmosphere of a mixture of inert gas argon with oxygen and with
the obligatory subsequent thermal treatment of the films in air or in the argon and hydrogen mixture
(Rodrigues et al. 2018; Torrell et al. 2011), which ultimately complicates the technology of their production.

In this work, we show the possibility of obtaining amorphous semiconductor nanocomposite films
TiO,<Ag> with a brightly pronounced LSPR effect, i. e. plasmon nanocomposites, synthesized by ion-
plasma radio-frequency (RF) magnetron co-sputtering only in argon atmosphere, and the peculiarities
of their structure and optical properties are studied.

Experimental Technique

Thin nanocomposite TiO,<Ag> films were obtained by ion-plasma RF (13.56 MHz) magnetron sput-
tering of a combined TiO, and Ag target in an argon atmosphere (99.998%) at a pressure ~ 0.5 Pa.
A preliminary high vacuum (~ 10~ Pa) was created by oil-free forevacuum (BocEdwards XDS10) and
turbomolecular (BB-150) pumps. The films were deposited on KU-1 fused silica substrates, fresh cleav-
ages of NaCl and KBr crystals, and single-crystal silicon (c-Si) plates that were kept at room temperature.
The technological parameters of the sputtering were selected so as to obtain an amorphous TiO, matrix
with inclusions of isolated silver nanoparticles.

The elemental composition and morphology of the films were monitored by energy dispersive analy-
sis (EDX) using a Quanta 3D 200i SEM with an EDAX. The thickness of the films was measured by
scanning a cleavage of the c-Si/TiO, and c¢-Si/TiO,<Ag> sandwich structures on SEM and ranged from
40 to 50 nm. For these measurements, the films were deposited on c-Si substrates cleaned from the SiO,
oxide layer. It was found that the composition of TiO, films is close to stoichiometric, and the Ag con-
centration in TiO,<Ag> films reaches 9.0 at. %.

The structure of TiO, and TiO,<Ag> films was studied by transmission electron microscopy (TEM
JEM 2100 JEOL). The optical properties (transmission 7 = f{A) and reflection spectra R = f{1)) of films
deposited on quartz substrates were studied on a Shimadzu UV2000 spectrophotometer in the spectral
range from 250 to 1100 nm with the recording step—1 nm.

Results and discussion

The structure of TiO, and TiO,<Ag> films

Fig. 1 a-e shows typical TEM images and selected area electron diffraction (SAED) patterns of TiO,
and TiO,<Ag> films with silver concentration 9.0 at. %. Figs. 1 b and d show typical SAED patterns
of TiO, films and the matrix of the TiO,<Ag> film. The SAED of TiO, film (Fig. 1 b) and matrix of the
film TiO,<Ag> (Fig. 1 d) are characterized by a diffuse halo, which is indicative of their amorphous
structure. However, in the matrix of TiO,<Ag> films, the diffuse halo is less blurred, so its structure
is more ordered. The decoding of SAED ring reflections (Figs. 1 d and e) is performed using the CrysTBox
program (Klinger, Jéager 2015).

196 https://www.doi.org/10.33910/2687-153X-2023-4-4-195-202



https://www.doi.org/10.33910/2687-153X-2023-4-4-195-202

K. Dauithan, O. Yu. Prikhodko, S. L. Peshaya, Y. S. Mukhametkarimov,
S. A. Kozyukhin, S. Ya. Maksimova, G. A. Ismaylova

Fig. 1. TEM images (a, ¢) and SAED patterns (d, e) of TiO, (a, b) and TiO,<9.0 at. % Ag> (c, d, e) films,
as well as the size distribution of Ag nanoparticles in TiO,<9.0 at.% Ag> film (f)

The TiO,<Ag> film matrix contains isolated nanoparticles (Fig. 1 c). SAED of the nanoparticle
(Fig. 1 e) shows clearly pronounced point reflections characteristic of a single-crystal structure. It follows
from the interpretation of the SAED that this nanoparticle is silver.

Fig. 1 f shows a histogram of the size distribution of Ag nanoparticles in TiO,<9.0 at.% Ag> films,
obtained as a result of the TEM image processing. We can see that most silver nanoparticles have
a diameter ~ 3—4 nm, and the distribution itself is lognormal. The same sizes for silver nanoparticles
were obtained for TiO,<Ag> films with other Ag concentrations. Similar results were obtained
for wide-gap semiconductor nanocomposite a-C:H<Ag> films with the LSPR effect, also prepared
by ion-plasma co-sputtering (Prikhodko et al. 2016; 2017).

Thus, the nanocomposite TiO,<Ag> films, obtained by ion-plasma RF magnetron co-sputtering
of TiO,and Ag in only argon atmosphere, consist of amorphous TiO, matrix and isolated crystalline
silver nanoparticles.

Optical properties of TiO, and TiO <Ag> films

Fig. 2 shows the optical transmission spectra of the TiO, and TiO,<Ag> films with different silver
concentrations. It can be seen that the spectra of the films are characterized by the sharp transmission
band edge (fundamental absorption band edge) in the near UV range from 280 to 320 nm. The slope
of the passband edge changes with an increase in the silver concentration in the TiO,<Ag> films:
it increases significantly with the Ag concentration from 0 to 4.9 at. %, and then decreases slightly.
The TiO, films in the visible and near IR regions (from 400 to 1100 nm) have a sufficiently high transmittance.
In contrast, a pronounced absorption band with a maximum in the visible region of the spectrum
is observed in TiO,<Ag> films.

Physics of Complex Systems, 2023, vol. 4, no. 4 197
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Fig. 2. Transmission spectra of TiO, and TiO,<Ag> films with different concentration of silver

Fig. 2 shows that an increase in the Ag concentration (the volume fraction of Ag nanoparticles) leads
to a significant increase in the intensity of this absorption band. The maximum of the absorption band,
depending on the Ag concentration, is located in the range from 455 to 488 nm. As the concentration
increases, the resonance peak shifts towards longer wavelengths. The main shift of the maximum
is observed in the region up to 4.9 at. % Ag.

According to (Manikandan et al. 2003), the observed absorption band in TiO,<Ag> films is due
to the effect of surface plasmon resonance (LSPR) in consequence of resonant absorption of electromag-
netic radiation by free surface electrons of isolated silver nanoparticles.

In (Ievlev et al. 2014), it was shown for polycrystalline semiconductor nanosized anatase films that
the edge of the fundamental absorption band is formed by both indirect and direct allowed transitions.
In this connection, we analyze the features of the fundamental absorption of the studied amorphous
semiconductor nanosized TiO, and TiO,<Ag> films.

The optical band gap (E ) of the films was estimated using the Tauc method (Tauc et al. 1966). Accord-
ing the method, in the fundamental absorption region when the absorption coefficient a > 10* cm™,
the relationship between the light photon energies /v, a, and E is described by the relation

ahv ~ (hv—Eg)”“, (1)

where #n = 1/2 corresponds to allowed direct-gap optical transitions, n = 2—to allowed indirect-gap
transitions (quadratic absorption law) (Tauc et al. 1966).

The optical band gap of TiO, and TiO,<Ag> films was determined for both allowed direct-gap and
indirect-gap optical transitions. The error in E did not exceed = 0.01 eV. Fig. 3 shows the spectral
dependences (a/v)"? and (ahv)* for nanosized TiO, and TiO,<Ag> films with an Ag concentration of 4.9,
5.3, and 9.0 at. %.
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Fig. 3. Spectral dependences (a/v)"> and (ahv)* for TiO, (a) and TiO,<Ag> (b-d) films

It can be seen that in the TiO, and TiO,<Ag> films spectra there are rather extended characteristic
rectilinear sections, and extrapolation of them to the energy axis /v gives the values of E . However, the
detailed analysis shows that the most extended characteristic rectilinear sections are that when n = 2
(quadratic absorption law). It follows that the edge of the fundamental absorption band in the TiO, and
TiO,<Ag> films is mainly formed by indirect allowed optical transitions.

Fig. 4 (curves 1 and 2) shows the concentration dependences of TiO,<Ag> films optical band gap.
The Egvalues of the films correspond to semiconductor wide-gap materials. Optical band gap for TiO,
and TiO,<Ag> films in the case of n = 2 (the quadratic absorption law) are significantly lower than that
of n = 1/2. When # = %, the insignificant rise of £ with Ag concentration occurs, but when n = 2,
the significant increase of E, takes place in the region of Ag concentration from 0 to 4.9 %, and later on
E, practically is invariable. Note, that the E for TiO,<Ag> films considering both absorption laws with

Ag concentration exceeding 3.8 at.% practlcally C01nc1de with the data (Zhang et al. 2006) for polycrys-
talline anatase films.
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Fig. 4. Concentration dependences of TiO,<Ag> films E_for different laws of absorption (curves 1 and 2)
and Urbach energy E (curve 3)
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To explain the increase in the optical band gap in nanocomposite TiO,<Ag> films, let us consider the
variation with the Ag concentration of the Urbach energy (E ) (Fig. 4, curve 3). According to (Akshay et
al. 2019; Urbach et al. 1953), E, characterizes the degree of semiconductor structure disorder, which
determines the tail extension of the density of states at the boundaries of the allowed energy bands E,
and E . The relationship between the absorption coefficient a, the energy of the incident photon /v, and
the Urbach energy E is given by the following relation (the empirical Urbach’s rule)

a~ exp(hV/Eu). (2)

The Urbach energy was estimated from the low-energy region of the absorption spectrum. It is seen
from Fig. 4 that the Urbach energy significantly decreases in the region from 0 to 4.9 at. % with Ag
concentration increase, but the optical band gap of TiO,<Ag> films significantly rises, in the case
of a quadratic absorption mechanism. A further increase in the silver concentration to 9.0 at. % leads
to an insignificant increase in the Urbach energy and an insignificant decrease in E i. e., there is
a correlation between changes in E_and E, when a quadratic absorption law take place. It follows that
the increase in the Ag concentration in the TiO,<Ag> films leads to the decrease of the density of localized
states tails extension in the band gap, which is indicative of the ordering of the amorphous TiO,<Ag>
films structure. This is in good agreement with the change in the steepness of the transmission (absorption)
band edge founded in this work.

Considering our data on TEM (Peshaya et al. 2022) the ordering of the amorphous structure
of TiO,<Ag> films with an increase in the concentration of Ag from 0 to 4.9 at. %, apparently, is due to
a decrease in the porosity of the films because of the filling of pores in them with silver nanoparticles.
This, in turn, leads to an increase in the refractive index of the matrix and, as a consequence, to a shift
of the resonant peak towards longer wavelengths.

A further increase in the concentration of silver in the films to 9.0 at. % leads to some disordering
of the structure as a result of an increase in the amount of silver nanoparticles in the matrix of the films.

It should be noted that an increase in silver volume fraction in the TiO,<Ag> nanocomposite can also
lead, as the theory (Gibson et al. 1982) shows, to a shift of the resonance peak maximum towards longer
wavelengths. Apparently, this is the reason for the further shift of the maximum to the red region.

Thus, the optical properties of amorphous semiconductor nanocomposite TiO,<Ag> films are
characterized by a sharp edge of the fundamental absorption band in the near UV region, which is formed
mainly by indirect allowed optical transitions. The slope of the absorption band edge and the optical
band gap depend on the silver concentration in the films. There is a pronounced LSPR effect in the visible
region of the spectrum, the intensity of which increases significantly with the rise of Ag concentration.

Conclusions

Using the ion-plasma RF magnetron sputtering of a combined TiO, and Ag target in an atmosphere
of only argon without subsequent heat treatment, amorphous semiconductor nanocomposite TiO,<Ag>
films with a thickness from 40 to 50 nm and with a silver concentration of up to 9.0 at. % were obtained.

It was found by TEM that the structure of the films consists of practically amorphous TiO, matrix
and isolated silver nanoparticles with the diameter ~ 3—4 nm.

The resulting TiO,<Ag> films are wide-gap semiconductor materials. The optical band gap of the
films increases significantly with the silver concentration. The optical properties of TiO, and TiO,<Ag>
films are characterized by a sharp fundamental absorption edge at ~ 300 nm, which is due to direct and
indirect allowed optical transitions. In the visible region of the spectra of TiO,<Ag> films, a pronounced
surface plasmon resonance absorption is manifested. The LSPR intensity significantly increases with an
increase in the silver concentration in the films, and the absorption maximum, depending on the Ag
concentration, is located in the region from 455 to 488 nm. The presence of isolated silver nanoparticles
and their concentration influences on the degree of the structure order of the amorphous matrix of the
TiO,<Ag> film and, thus, the optical band gap of the films. Amorphous TiO,<Ag> films, in comparison with
TiO, films, have a more ordered structure of the amorphous TiO, matrix and, as a consequence, higher Eg.

The shown possibility of obtaining amorphous plasmon nanocomposite TiO,<Ag> films using simpler
technology is of significant interest for their application in structures fabricated in a continuous cycle
of planar technology.
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Abstract. The electrophysical properties of a series of PbTe samples doped with Tl and an additional
admixture of Na are investigated. Observed features of temperature dependences of electrical conductivity
and Hall’s coefficient are explained within the framework of the model of resonant states of thallium, taking
into account the complex structure of the valence band. It is shown that the idea of an ideal crystal
and a band structure in the framework of the one-electron approximation is insufficient to explain
the experimental data on the Hall effect. It is necessary to take into account the modification of the energy
spectrum taking into account the statistical distribution of impurities and defects and the additional
interaction of particles.

Keywords: PbTe, energy spectrum of holes, TI and Na impurities, Fermi level stabilization, modification
of the band spectrum

Introduction

Chalcogenides of elements of groups IV and V of the periodic table are widely used in thermoelectricity.
They are the main materials for the manufacture of low-temperature and medium-temperature energy
converters. The most studied are the tellurides of lead (PbTe), tin (SnTe) and bismuth (Bi,Te,).

From the point of view of the band theory, these materials occupy an intermediate position between
classical metals and semiconductors. Like semiconductors, they have a band gap (E ). At the same time,
they are characterized by metallic-type conductivity up to the lowest temperatures. They have electron
and hole conductivity due to their own electroactive point defects that do not have levels in the band
gap. So the concentration of free carriers in the permitted zones is maintained at low temperatures
(T — 0K) like ordinary metals.

Due to the wide area of homogeneity, these materials are not pure (having only their own conductivity).
Typical concentrations of electrons (#) and holes (p) in native unalloyed materials are of the order
of 1 x 10" cm™ in lead chalcogenides, 1 x 10" cm™ in bismuth telluride and 1 x 10*° cm™ in SnTe and
Sb,Te, (Abrikosov et al. 1975; Gol'tsman et al. 1972; Ravich et al. 1968).
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Energy spectrum of holes in highly alloyed PbTe

Despite numerous studies, the band structure of thermoelectric materials has not been studied
sufficiently and is controversial, especially in the field of high Fermi energies (E,).

According to the results of calculations (Nemov, Ravich 1998; Volkov et al. 1983; 1984), the energy
spectrum of the density of electronic states of the valence band g(E) of lead and tin chalcogenides has
the following form (see Fig. 1).

A g(E)

Fig. 1. Qualitative view of the energy spectrum of holes in PbTe and SnTe

The main extremes of the valence band of cubic PbTe and SnTe crystals are located at the L-points
of the Brillouin zone. The dependence of the energy E on the quasi-pulse p of charge carriers at these
extremes is non-parabolic and, in agreement with experimental data, is well described by the Kane
model (Ravich et al. 1968) up to approximately the values of the Fermi energy E, ~ 0.15 eV.

In the monograph (Ravich et al. 1968), the energy spectrum of holes in PbTe is considered in detail
experimentally and theoretically in the region of low Fermi energies (up to a hole concentration less than
5 x 10" cm~3). The experimental data clearly show the contribution to the phenomena of carrier transfer
of one kind (light holes) with a small effective mass m, ~ 0.1m, (where m, is the mass of a free electron).

At high Fermi energies, charge carriers from an additional extremum contribute to the transfer phe-
nomena. The Hall coefficients (R) and Seebeck coefficients (a) grow with temperature. The experimen-
tal data are described qualitatively by a two-band model (light and heavy holes with an effective mass
of the order of the mass of a free electron). The authors (Nemov, Ravich 1998; Volkov et al. 1984) believe
that the second extremum of the valence band is located at the Z-points of the Brillouin zone and, pos-
sibly, is the saddle point.

At even higher hole energies, there is another extremum of the valence band, at A-points. It was
experimentally observed in solid solutions of Sn_,Pb ,.Ge  .Te doped in (Nemov et al. 2000).

Note that high concentrations of holes (Fermi energy) in PbTe are achieved by doping with an accep-
tor impurity, traditionally with Na, which is the main dopant of the acceptor type in lead chalcogenides.
With the help of Na, it is possible to obtain crystals with a concentration of holes up to 1.5 x 10* cm™
when samples are introduced into the charge about 1-2 at.% Na.

Note that small concentrations of holes in IV-VI materials are achieved due to a deviation from the
stoichiometric composition towards an excess of chalcogen. It is significant that despite the change
in the doping method (the transition from an excess of chalcogen to an admixture of sodium),
the kinetic coefficients monotonically and smoothly change with increasing hole concentration.

An essential feature of lead and tin chalcogenides is the absence of defect levels and major alloying
impurities (Na—acceptor, Cl—donor) in the forbidden zone (Ravich et al. 1968).

In the samples of PbTe doped with Na, characteristic features of temperature and concentration
dependences of kinetic coefficients are observed, indicating the participation in the transfer phenomena
of at least two types of current carriers—light holes from the main L-extremum and heavy holes from
the additional L-extremum. Such features are qualitatively interpreted by a two-zone model.

However, it is not possible to describe the experimental data quantitatively in a two-zone model with
a single set of additional extremum parameters. There is a significant variation in the parameters of the
two-zone model, especially the parameters of the additional extremum (second zone). So we must admit
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that the model of hard zones applied to doped PbTe does not work when trying to quantify the transfer
phenomena. The strong sensitivity of the energy position of the additional extremum and the effective
mass of holes to the calculated parameters of the model was also noted in (Volkov et al. 1983; 1984).
Therefore, it can be assumed that the appearance of the second zone in the energy spectrum of p-PbTe
may be due to the presence of crystal lattice defects, given their large number.

An admixture of thallium in lead telluride (PbTe) behaves in an unusual way. Thallium doping of lead
telluride leads to a radical change in the electrophysical properties of PbTe. The following properties are
manifested to the greatest extent: stabilization of the hole concentration (pinning of the Fermi level),
a change in the type of temperature dependences of the Hall coefficients, a threshold decrease
in the mobility of holes and the appearance of a superconducting transition with a critical temperature
near 1 K (Shamshur et al. 2008). Moreover, the band of resonant states according to (Volkov et al. 1984)
is located near the edge of the assumed extremum at the Z-points of the Brillouin zone.

Pinning of the Fermi level and stabilization of the hole concentration (p) are due to the presence
of partial filling of the density band of resonant states associated with thallium.

The threshold drop in mobility and the increase in the scattering cross section of holes on thallium
impurities is explained by the resonant scattering of holes into the Tl band. The occurrence of super-
conductivity of PbTe samples is observed: Tl when the Fermi level degenerates into a band of resonant
states (Kaidanov et al. 1982; Shamshur et al. 2008).

In this paper, in order to experimentally verify the currently used model concepts of the alloying ef-
fect of Na and Tl impurities, PbTe samples doped with Na and TI simultaneously were made, kinetic
coefficients were measured and a comparative analysis of the temperature dependences of kinetic coef-
ficients with data for lead telluride samples doped with a single impurity was carried out. Information
was obtained on the features of the energy spectrum of the PbTe valence band at Fermi energies greater
than 0.15 eV.

Objects of research

The studies were carried out on polycrystalline PbTe samples manufactured using conventional
metal-ceramic technology used in industry. They were annealed at a temperature of 650 °C for 120 hours.
The synthesis of ingots was carried out from the initial chemical elements of semiconductor purity
in evacuated quartz ampoules.

The choice of sample compositions was due to the following considerations. Na doping allows a wide
range of changes in the concentration of holes in PbTe. However, in the quantitative analysis of data
on transfer phenomena in PbTe:Na samples there is a large variation in the parameters of the two-
band model, in particular, the effective mass of holes in the additional extremum. It should be noted that
thallium doping does not allow to achieve such high concentrations of holes as in the case of using
a sodium impurity. However, there is a stabilization of the concentration of holes in relation to the in-
troduction of excess components and additional dopant Na. In this case, the Fermi level moves within
the additional peak of the density function of states (associated with thallium doping) and exits it at high
concentrations of additional acceptor impurity (Na).

Thus, the double doping of PbTe with thallium and sodium makes it possible to study the spectrum
of electronic states in the valence band.

Since the solubility of impurities in PbTe reaches 1-2 at.%, we introduced a small amount of TI,
sufficient to stabilize the Fermi level, and varied the Na impurity content within wide limits in order
to shift the Fermi level deep into the valence band.

Experiment

Measurements of kinetic coefficients were carried out by the probe method on direct current using
copper-constantane thermocouples in the temperature range of 77-450 K in a constant magnetic field
of 1.6 T.

The temperature dependences of the main kinetic coefficients—specific electrical conductivity (o)
and Hall (R) were investigated. On a series of PbTe:(Tl, Na) polycrystals with a fixed thallium (N,,) con-
tent of 0.3, 0.5 and 2 at.%. The sodium content varied from 0 to 2.5 at.%.

Physics of Complex Systems, 2023, vol. 4, no. 4 205
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Results and discussions

The Hall coefficient in p-PbTe samples obtained by deviation from the stoichiometric composition
towards an excess of tellurium or the introduction of an impurity of Na monotonically increases
with increasing temperature. However, from helium temperatures (4.2 K) to about 150 K,
the Hall coefficient retains a constant value. Therefore, the concentration of holes p in lead chalcogenides
is determined from the value of the Hall coefficient at a temperature of 77 K by the formula:

P=(eR)"

Then, with a further increase in temperature, the Hall coefficient gradually increases and reaches
a maximum in highly doped samples at approximately 430 K (Ravich et al. 1968). The position
of the maximum is almost independent of the concentration of holes. A decrease in the Hall coefficient
is observed long before the onset of intrinsic conductivity and cannot be explained by the latter.
The observed behavior of the Hall coefficient is traditionally associated in semiconductor physics and
in PbTe with the complex structure of the valence band and explained in the framework of a two-band
model (Ravich et al. 1968).

1020 L
o

=
3]
a

1019 L

-1 0 1 2
0 0
NPb’ at.% NNa' at.%

Fig. 2. Dependence of the hole concentration on the amount of additional impurities introduced into PbTe:T1

Consider the experimental data we have obtained, shown in Figs. 2—4. As can be seen from Fig. 2,
in a series of images with relatively small (0.3 and 0.5 at.%) with thallium content, there is indeed
a fairly wide area of stabilization of the concentration of holes. When an additional dopant—excess Pb
(donor)—is added to the charge of PbTe:T1 samples, the concentration of holes in the valence band de-
creases. The Fermi level shifts to the ceiling of the valence band. When Na acceptor impurity
in the amount of N, > 2N, is added to the charge, the hole concentration begins to grow and the Fermi
level leaves the band of resonant states. This result correlates with the electrical conductivity data.

The temperature dependence of the specific electrical conductivity of the studied PbTe:(Tl, Na)
samples has a metallic character, and is characterized by lower values compared to PbTe:Na crystals.
Estimates show that the cross-section of the scattering of holes on Tl impurities is about an order
of magnitude higher and has a threshold character depending on the concentration of holes. This is due
to the strong resonant scattering of holes (Kaidanov, Nemov 1981; Shamshur et al. 2008) in the band
of resonant states arising against the background of the resolved states of the PbTe valence band when
doped with its admixture of thallium (Kaidanov, Nemov 1981). The dependences of the resistivity on the
amount of additional impurities in all series of samples with a fixed thallium content are similar and have
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Fig. 3. Dependence of the specific electrical conductivity on the concentration of sodium impurity

the form of a curve with a maximum, which is consistent with the ideas of resonant scattering of holes
into the thallium band. Fig. 3 shows data for a series of samples with 2 at.% thallium content, since a large
amount of impurities compared to the concentration of intrinsic defects using the neutrality equation
allows us to estimate the degree of filling of impurity states with electrons with holes (or electrons)
according to the formula:
k=05+ M .
2Ny

The two in the formula takes into account the presence of two electronic states per thallium atom.
It turns out that the maximum resistance corresponds to approximately half the filling of the resonance
state band, and the initial points correspond to crystals doped with a single admixture of thallium grown
by the Bridgman-Stockbarger method. They have a value of k = 0.3, that is, in samples with a high thal-
lium content of 1-2 at.%, the thallium strip is about 2/3 filled with electrons and 1/3 with holes. For large
N, the coefficient k = 0, which is consistent with the concepts of resonant scattering and the passage
of the peak of resonant states by the Fermi level.

Consider the Hall effect data. As can be seen from Fig. 4, in PbTe:(Tl, Na) samples, the character
of the temperature dependence of the Hall coefficient radically changes. From the Hall coefficient R(T)
growing with temperature to PbTe:Na it changes the sign of the dR/d T derivative in the low temperature
region and becomes decreasing over the entire temperature range (up to 450 K).

Moreover, what is significant, even in samples with a significantly higher (almost an order of magnitude)
content of additional impurity Na (up to 2 at.%) than T1 (0.3 at.%), the temperature dependences of the
coefficient R(7) do not match the dependences characteristic of PbTe:Na samples with the same hole
concentration and Fermi level. This means that PbTe:(Na) and PbTe:(Tl, Na) samples in the region
of high Fermi energies at the same concentrations of holes have different values of the density function
of states, i. e. crystals with the same crystal lattice, but with different impurities have a different energy
spectrum. This conclusion is supported by the significant variation in the band parameters of the second
zone of sodium-doped PbTe crystals noted in the literature.
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Fig. 4. Temperature dependence of the Hall coefficient in PbTe:(T1, Na) samples

It should be noted that the presence of a peak in the density of states associated with TI against
the background of the resolved states of the valence band in PbTe:(T1, Na) is confirmed by superconductivity
data. An estimate of the density of states per spin can be made using the formulas:

H_ (0
N(0)=4.8*1014A:
Pl

oH,, (T)

N(0)=2.8%10" p7'
(0) Py or

i

T->T,

where H o is the second critical magnetic field, Py is the resistivity of the sample in the normal state,
HCZ(O) is an extrapolation of the dependence of HCZ(T ) to T = 0 K. The estimates made in this way

showed that the density of states in the valence band of PbTe doped with Tl and Na exceeds its value
in samples of PbTe doped with Na in samples with such a concentration of holes. In this regard,
the authors (Kaidanov et al. 1982) suggested that superconducting electrons are in hybridized band-
impurity states.

Thus, based on the results obtained in the work and the available literature data, it must be admitted
that the hard zone model does not work in PbTe doped samples with sodium and thallium. The energy
spectrum of holes depends on the grade and amount of impurities. Moreover, in the one-electron
approximation, it is not possible to combine the appearance of a peak of resonant states in thallium-
doped PbTe with two energy compounds per thallium atom. Within the framework of the classical
theory of BCS, there is no explanation for the occurrence of a superconducting transition in PbTe:T1
with a high critical temperature for semiconductors T ~ 1 K.

Conclusions

Thus, the experimental data obtained in the work on transfer phenomena in conjunction with the
literature indicate that the ideas of an ideal crystal in the one-electron approximation and the band theory
are insufficient to describe the electrophysical properties of PbTe and other compounds of group IV-VL
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This is understandable, since they are synthesized with a noticeable deviation from the stoichiometric
composition with a large number of intrinsically electrically active defects (about 0.1-1 at.%) In addition,
the materials used in thermoelectricity contain alloying impurities in an amount exceeding the concentration
of intrinsic defects, distributed statistically. In such cases, using the example of III-V semiconductors,
A. Yu. Zakharov showed (Zakharov 2015) that it is necessary to take into account the approximation
of solid solutions and the approach with renormalization of the electron energy spectrum.

It should be noted that this problem is common for compounds A" BV and A} By".

Conflict of Interest

The authors declare that there is no conflict of interest, either existing or potential.

Author Contributions

All the authors discussed the final work and took part in writing the article.

References

Abrikosov, N. Kh., Shelimova, L. E. (1975) Poluprovodnikovye materialy na osnove soedinenii A"'B"" [Semiconductor
materials based on compounds A"B"']. Moscow: Nauka Publ., 195 p. (In Russian)

Gol'tsman, B. M., Kudinov, V. A., Smirnov, L. A. (1972) Poluprovodnikovye termoehlektricheskie materialy na osnove
Bi,Te, [Semiconductor thermoelectric materials based on Bi,Te,] Moscow: Nauka Publ., 320 p. (In Russian)
Kaidanov, V. I, Nemov, S. A. (1981) Vliyanie primesej talliya na rasseyanie dyrok v telluride svintsa [Effect
of thallium impurities on hole scattering in lead telluride]. Fizika i tekhnika poluprovodnikov — Semiconductors,

15 (3), 542-550. (In Russian)

Kaidanov, V. I, Nemov, S. A., Parfen’ev, R. V., Shamshur, D. V. (1982) Vliyanie dopolnitel'nogo legirovaniya aktseptornoj
primes’yu na sverkhprovodyashchij perekhod v PbTe<Tl> [The effect of additional doping with an acceptor
impurity on the superconducting transition in PbTe<Tl>]. Pisma v ZhEHTF — JETP Letters, 35, 517-519.
(In Russian)

Nemoyv, S. A., Osipov, P. A., Proshin, V. L. et al. (2000) Sverkhprovodimost’ splavov Sn_ ,Pb ..Ge, .Te, legirovannykh
In [Superconductivity of In-doped Sn, ,Pb ..Ge  Te alloys]. Fizika tverdogo tela — Physics of the Solid State,
42 (7), 1180-1182. (In Russian)

Nemov, S. A., Ravich, Yu. I. (1998) Primes’ talliya v khal'’kogenidakh svintsa: metody issledovaniya i osobennosti
[Thallium dopant in lead chalcogenides: Investigation methods and peculiarities]. Physics—Uspekhi — Advances
in Physical Sciences, 168 (8), 817—842. https://doi.org/10.1070/pu1998v041n08abeh000427 (In Russian)

Ravich, Yu. I, Efimova, B. A., Smirnov, L. A. (1968) Metody issledovaniya poluprovodnikov v primenenii k khal’kogenidam
svintsa PbTe, PbSe i PbS [Methods of semiconductor research applied to lead chalcogenides PbTe, PbSe and PbS].
Moscow: Nauka Publ., 383 p. (In Russian)

Shamshur, D. V., Nemov, S. A., Parfen’ev, R. V. et al. (2008) Nizkotemperaturnaya provodimost’ i effekt Kholla
v poluprovodnikovykh tverdykh rastvorakh (Pb Sn, ) . In . Te [Low-temperature conductivity and Hall effect
in Semiconductor Solid solutions (Pb_Sn In,, Te]. Fizika tverdogo tela — Physics of the Solid State, 50 (11),
1948-1952. (In Russian)

Volkov, B. A., Pankratov, O. A., Sazonov, A. V. (1983) Teoriya elektronnogo energeticheskogo spektra poluprovodnikov
AVBY! [Theory of the electronic energy spectrum of semiconductors AVBYY]. Zhurnal eksperimental’noj
i teoreticheskoj fiziki — Journal of Experimental and Theoretical Physics, 85 (4), 1395-1408. (In Russian)

Volkov, B. A., Pankratov, O. A., Sazonov, A. V. (1984) Zonnaya struktura tverdykh rastvorov na osnove soedinenij
AVBY! [Band structure of solid solutions based on compounds A"VBY']. Fizika tverdogo tela — Physics of the Solid
State, 26 (2), 430—435. (In Russian)

Zakharov, A. Yu. (2015) Teoriya elektronnoj struktury poluprovodnikovykh tverdykh rastvorov zameshcheniya.
Analiticheskie podkhody. Obzor [Theory of the electronic structure of semiconductor solid substitution solutions.
Analytical approaches. Review]. Fizika i tekhnika poluprovodnikov — Semiconductors, 49 (7), 865—886.
(In Russian)

1—2)0,84

Physics of Complex Systems, 2023, vol. 4, no. 4 209


https://doi.org/10.1070/pu1998v041n08abeh000427

Physics of Complex Systems, 2023, vol. 4, no. 4
www.physcomsys.ru

Summaries in Russian / IHpopmayus o cmamvsax Ha pycCKOM A3biKe

Ousuka KOHACHCUPOBAHHOTO COCTOAHUA

CPABHEHUE ITOTEHLIUAAOB MEXXATOMHOTO B3AVMMOAEVICTBUSA ITPUI MOAE-
ANPOBAHINU YIIPYTUX XAPAKTEPVICTUIK IICEBAO-TPA®EHOBBIX KPMICTAAAOB

PoxxkoB Muxaua AaexcaHapoBuy, Abpamenko Hukurta Amutpueuy, CmupHoB AHApent Muxai-
AoBny, KoaecHukoBa AHHa AbBOBHa, PomaHOB AAekcert EBrenbeBny

AnHoTtanus. B HacTosmen paboTe MpOBEAEHO MOAEAVPOBAHME MEXaHUYEeCKUX XapaKTepUCTUK
nceBAO-rpadeHoOBbIX KpuctaaroB G5-7v1, G5-6-7v2, G4-8vl, G5-6-8v2, G5-6-8v4, G5-8v1, KoTopble
BKAIOYAIOT B Ce0s MAOTHBIE CETKY Pa3HO3HAKOBBIX KAMHOBBIX AMCKAMHALMI. AASI MICCAEAOBAHMSI pac-
CMaTpUBaeMbIX KPUCTAAAOB MCIIOAB30BAACS METOA MOAEKYASIPHOVM AMHaMMKU. BBIAO mpeACTaBA€HO
CpaBHEHMe 3HAYeHUJ YIPYIMX XapaKTepuUCTUK rpadeHa M rceBpO-rpadeHa, MOAYYEHHBIX C IIOMO-
IIbI0 MOTEHI[MAAOB MexxaTroMHoro B3anmopencTBust AIREBO, Tersoff u LCBOP. ITpoaeMoHCTpupo-
BaHa OIPaHMYEHHOCTb IPMMEHEHMS AQHHBIX TIOTEHLIAAOB IIPU MOAEAVPOBAHUM IICEBAO-TPadEeHOBbIX
KPUCTAAAOB. B pesyaprare paboThl CA€AQH BBIBOA O HEOOXOAVIMOCTM MOAEPHM3ALMM CYIIeCTBYIOLINX
MOTEHIIIAAOB MEXXaTOMHOTI'O B3aMIMOAEVICTBYS AASI YTAEPOAHBIX AAAOTPOIIOB MAY CO3AQHUSI HOBOTO.

KAroueBble cAOBa: MOAEKYASIpHAsI AMHAMMKa, ICEeBAOTpadeH, yIpyrue CBOMCTBA, AVCKAMHALINS,
AedeKTHas CTPyKTypa

Aas uyutuposanusi: Rozhkov, M. A., Abramenko, N. D., Smirnov, A. M., Kolesnikova, A. L.,
Romanov, A. E. (2023) A comparison of interatomic interaction potentials in modeling elastic
properties of pseudo-graphene crystals. Physics of Complex Systems, 4 (4), 149-156. https://www.doi.
org/10.33910/2687-153X-2023-4-4-149-156 EDN HRTBPL

BAVAHNE TEMITEPATYPHBIX PEXKMIMOB HA TEPMOCTVIMYAVIPOBAHHYIO AEITO-
AAPU3SALNIO MAEHOK ITIOAVUBUHNANAEHOTOPUAA

Boaruna Eaena AaekceeBHa, MepkyaoBa Mapus DAyapaoBHA, TeMHOB AMUTpPUit DayapAOBUY

AnHoTtanus. B paboTe 1CCAEAOBAAOCH BAMSIHME TEMIIEPATYPhI MTOASIPU3ALMM B IIOA€ KOPOHHOTO
paspsiAa M PEKMIMOB IIPEABAPUTEABHOTO OTKUIA TAEHOK COITOAMMEPA MTOAMBUHUAUAEHPTOPKAQ C Te-
TPapTOPITMAEHOM Ha TOKV TEPMOCTUMYAVPOBAHHOM AETMOAsIpU3aluu. AASI Pa3AMYHBIX TEMIIEPATYp
HOASIpM3aLy 00pa3lioB ONpeAEA€Hbl NapaMeTPhbl SAeKTPUUECKM aKTVMBHBIX Ae(PeKTOB, OTBETCTBEH-
HbIX 32 peAAKCALMIOHHBIE ITPOLIECCHI, BEAYMHA BBICBOOOXXAAEMOTO B IIPOLieCCe AETIOASIpM3aLMy 3apsIAa
(Q) 1 3HaUEHME MTHe30IAEKTPUIECKOTO MOAYAS d... BbIABAGHDI HAMAYYLIME TeMIepaTypHbIe PeXKNMBbI
CO3AQHMSI Tb€309AEKTPUYECKOTO COCTOSIHMSI B AAHHOM MaTepuaae.

KAloueBble CAOBa: MOAMBUMHUAUAEHPTOPKA, TEPMOAKTUBALIIOHHAS CTIEKTPOCKOINS, TEPMOCTUMY-
AVIDOBAHHAsI AETIOASIPM3ALIMsI, KOPOHHBIN Pa3psiA, SAEKTPUYECKY aKTUBHbBIE AedeKTbl

Aast tutuposanus: Volgina, E. A., Merkulova, M. E., Temnov, D. E. (2023) Influence of temperature
conditions on thermostimulated depolarization of polyvinylidene fluoride films. Physics of Complex
Systems, 4 (4), 157-160. https://www.doi.org/10.33910/2687-153X-2023-4-4-157-160 EDN BQEZSV

CAOXHAS HESKCIIOHEHUVAABHAS ®OPMA 3ATYXAIONINX KOAEBAHUN
B OAHOOCHOOPUEHTUPOBAHHBIX IOAMMEPHBIX MATEPMAAAX C OAHON
MEXAHIYECKOV CTEITEHBIO CBOBOABI

BaBuaoB Amutpuit Cepreesuy, IIpuinenénox Oarsra bopucosHa, PeimkeBuy [TaBea [TaBaoBuu

AnHoTtanus. B pabote mccaep0BaHbI peAaakcalMOHHbIE CBOMCTBA OAHOOCHO-OPUEHTHPOBAHHBIX
MOAVIMEPHBIX HUTeIl. B AQaHHOU cTaTbe aHAAMBMPYETCs KoaebaTeAbHasl peAaKkcalyisl B MeXaHU41eCKol
CHUICTEMeE C OAHOIT CTeNeHbI0 CBOO0ABL. CucTeMa MPeACTaBASIET COOOI TSKEABIIT TPY3, BUCSIIUI HA Aer-
KO HATY, BBIMTOAHEHHOM 13 BBICOKOOPMEHTYPOBAHHOIO TIOAVMEPHOTO MaTepyraAa.

ABTOpaMI 3KCIIEPUMEHTAABHO ITOATBEPKAEH PaKT CYIIeCTBOBAHMS OMEHNIT AAST PSIAQ TIOAMMEPHBIX
MaTepraAoB (moaukanpomup, CBM, TepAOH, apMOC U Ap.) IIPU OTNIPEAEAEHHOM CTaTM4YeCKOM YPOBHE
HArpy3Ky HIDKe TeMIepaTypbl cTeKAOoBaHUs. AaHO ¢usnyeckoe oObsicHeHue (akTa CyleCTBOBAHMS
BTOPOM MOABI KOA€OAHMIL.

C OAHOII CTOPOHBI, B CHCTEME IPOUCXOAAT YIPYrue KOAeOaHUs, C APYIoil CTOPOHBI, COTAQCHO
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6appepHOIT MOAEAHM, TIPOUCXOASIT KOA€OAHMSI YMCEA 3ATIOAHEHNUSI SHEPTeTUYECKUX YPOBHEN. Apyrumu
CAOBaMM, BO3HMKAeET elljé OAHAa MOAQ KOAeOaHUI, CBsI3aHHAsl C BBICOKOIAACTUYHOI Aedopmartimerit,
IIOCKOABKY BBICOKO9AACTUYHAS AeOpMaLiVs OTPEAEASIETCS YMCAAMM 3aIIOAHEHMUSI COOTBETCTBYIOIINX
cocrosiHumit. [Tpu 6AM3KMX YacToTax 1 HabAwAaeTCs 3 dexT OreHuit.

KAroueBbIe CAOBaA: OAHOOCHO-OPUEHTUPOBAHHbIE TIOAMMEPHBIE MAaTEPUAABI, IIPOAOABHbIE MAAOAM-
IAUTYAHBIE KOA€OAHMsI, BBICOKODAACTUYHAS AepopMaLus, ONIpeAeAsIolee ypaBHeHE, OueHMsI

Aas nutuposanusi: Vavilov, D. S., Prishchepenok, O. B., Rymkevich, P. P. (2023) Complex non-
exponential form of damped vibrations in uniaxially oriented polymeric materials with one mechanical
degree of freedom. Physics of Complex Systems, 4 (4), 161-175. https://www.doi.org/10.33910/2687-
153X-2023-4-4-161-175 EDN MYYBEC

Teopernueckas ¢pusnka

PACYET MMOKA3ATEAEN ASITYHOBA VI XAPAKTEPVICTUKY HEAVIHEVIHOVI AVIHA -
MUK B OB BEMHbBIX AHTVI®EPPOSAEKTPUKAX

Aum Cpro-Uy

AnHoTanums. B paboTte nccaeAyeTCst BAMSIHME aMIAUTYADL, YaCTOTBI M 3aTyXaHMsI IPUAOXKEHHOTO
IIOAST HA MaKCHMaAbHbIE TIOKa3aTeAr ASITyHOBA U XaOTUYECKYI0 AMHAMUKY B 00beMHbIX aHTU(EeppO-
saekTprieckux (AD3) cucremax. UnucAeHHOE MOAEAMPOBAHME IIPOBOAUTCS B TPeX YacTsx. B mepBon
4acTu, Mo aAroputMmy Boabda BBIMMCASIOTCS TMOKasaTeAu ASIYHOBa IPU M3MEHSIOLIENCsS 4acToTe
Y TIOCTOSIHHOM aMIIAUTYA€e. Bo BTOpOI YacTy aMIAUTYAQ BapbUPYETCS MIPU COXPAHEHUM OCTOSTHHOM
yacToThl. AAst Maabix (g = 0,01) u 60abiux (g = 0,3) 3HAYEHMIT 3aTyXaHMS PACCUMUTBIBAIOTCS ABa HAbO-
pa AaHHBIX. B TpeTbeit 4acTH, C MOMOIIBIO PSIAQ OTOOPAHHBIX TAPAMETPOB HA OCHOBE TIOAOKUTEABHBIX
Yl OTPULIATEABHBIX IIOKa3aTeAell ASIyHOBa U C MCIIOAb30BaHMeM MeTopa PyHre-KyTThl yeTBeprToro
HOPsIAKA CTPOSITCS pa30Bble MOPTPETHL. Pe3yAbTaThl MOKa3bIBAIOT, YTO MTOKa3aTeAu ASITyHOBA NpuMe-
HVIMBI AASI OTIPEAEAEHVIST XaOTUYECKMX U TEPUOANYECKMX PEXVMOB MIPY MAaAOM 3aTyXaHUM, TOTAA KaK
npy OOABIIOM 3aTyXaHUM KapTVHA MeHee OueBMAHA. B ccAeAOBaHMM TaKKe TOKAa3aHO, YTO M3MeHeHe
apaMeTPOB TMPUAOKEHHOTO IIOASI ITO3BOASIET KOHTPOAMPOBATh XAOTUYECKUE U IEPUOAUYECKUE
OTKAMKM B 00beMHOIT cucTeme ADD.

KaroueBble caoBa: mokasaTeAb AANYHOBA, aHTU(PEPPOIAEKTPUK, AUTMAPOreHpocdaT aMMOHNUS,
Xa0C, HEAMHETHOCTD, TEPUOANYECKUI OTKAUK

Aast nutupoBanust: Lim, S.-Ch. (2023) Calculations of Lyapunov exponents and characterizations
of nonlinear dynamics in bulk antiferroelectrics. Physics of Complex Systems, 4 (4), 176-194.
https://www.doi.org/10.33910/2687-153X-2023-4-4-176-194 EDN ZLXASG

Du3nKa NOAYNpOBOAHUKOB

OCOBEHHOCTIU CTPYKTYPblI I OINITUYECKIX CBOVICTB AMOP®HBIX ITOAY-
IMMPOBOAHMKOBBIX ITAA3BMOHHBIX HAHOKOMITIO3NTOB TiO,<Ag>, IOAYYEHHbIX
METOAOM NNOHHO-ITAASMEHHOTI'O CO-PACITBIAEHUA

Aayntxan Kyanpiubek, ITpuxoapko Oaer HOpbeBny, ITeumrass CBetaaHa AeoHuAOBHA, Myxamert-
kapumoB Epykan, Kostoxuu Cepreit Aaekcanpposuy, Makcumosa Cylomb6uka fky6oBHa, VicmariaoBa
I'y3aap AMUTOBHA

AnHoTtanus. ViccaepOBaHBI CTPYKTypa M ONTMYECKME CBOJCTBA aMOPQHBIX IOAYIPOBOAHMKO-
BBIX HAaHOKOMIO3UTHBIX MA€HOK TiO,<Ag>, MOAYYEHHBIX MOHHO-TIAA3MEHHbIM BY-MarneTpoHHbIM
COBMeCTHbIM pacnbiaeHueM mumienn us TiO, n Ag Toabko B aTMocdepe aprona. MaTpuia A€HOK
TiO,<Ag> amopdHas c BKAIOYEHUAMYU U30AMPOBAHHBIX HAHOYACTUL| cepebpa pasmepom 3—4 Hm. Criek-
TPBI ONTUYECKOTO IPOITYCKaHVS UMEIOT Pe3KUil Kpail OCHOBHOI IIOAOCHI IIOTAOLIeHUA B 00AacTu ~ 300
HM, 00pa30BaHHBII MPSIMBIMU U HEMPSIMBIMU pa3pelleHHbIMY ONTUYecKUMU nepexopamu. Llupuna
3amnpeIeHHoN 30HbI NAeHOK TiO,<Ag> yBeAMYMBaeTCsA C YBeAMYEHMEM KOHLEHTpauuu Ag n3-3a He-
KOTOPOTO YIOpsipAOYeHMsI MaTpuLibl. [ToAocCa MOTAOIeHNST HADAIOAQETCSI B BUAMMOM 00AaCTH CIIEKTpa
13-32 3ppexTa AOKAaABHOTO IIOBEPXHOCTHO-TIAA3MOHHOTO pe30HaHCHOro noraoieHus (ATTIIP) Ha Ha-
HouacTuuax cepebpa. VinreHcuBHoctb AITTIP yBeanurBaeTcs ¢ KOHLIEHTpalyeil cepebpa, a MaKCUMYM
IIOAOCHI ITOTAOLIIEHNSI B 3aBUCHMOCTH OT KOHLIeHTpauuu Ag HaXOAUTCS B 006aacTu ot 455 A0 488 HM.
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KAroueBbie cAOBa: MOHHO-TIAA3MEHHOE pacIibiAeHue, aMOP(HbIE TAQ3MOHHbBIE [TOAYIIPOBOAHUKO-
Bble HaHOKoMmo3uThl TiO,<Ag>, HaHOYaCTULIbI cepebpa, CTPYKTypa, ONTUYECKMe CBOCTBA, MOBepX-
HOCTHOE [TAQ3MOHHO€ pe30HaHCHOE IIOTAOLIeHe

Aast untrpoBanusi: Dauithan, K., Prikhodko, O. Yu., Peshaya, S. L., Mukhametkarimov, Y. S.,
Kozyukhin, S. A., Maksimova, S. Ya., Ismaylova, G. A. (2023) Peculiarities of the structure and optical
properties of amorphous semiconductor plasmon nanocomposites TiO,<Ag>, prepared by ion plasma
co-sputtering. Physics of Complex Systems, 4 (4), 195-202. https://www.doi.org/10.33910/2687-
153X-2023-4-4-195-202 EDN RRDAEF

SHEPTETUYECKUI CITEKTP ABIPOK B CUABHOAETYIPOBAHHOM PbTe

Hemos Cepreit Aaexcanpaposuy, AaumeBckuit 3uHosui, Ilpokaosa Buxropus IOpbeBHa, Muxaiiaos
Huxura AAaekcaHAPOBUY

AnHoTanums. VccaepoBaHbl 9AeKTpodu3aMuecKre cBoicTBa cepum obpasuos PbTe, aernpoBaHHbIX
Tl n ponoanuTeapHoON npuMecbio Na. HabAropaeMble 0COOEHHOCTY TeMIIEpaTyPHbIX 3aBUCUMOCTEN
9AEKTPOIPOBOAHOCTHU U KO3 uieHTa X0AAa OOBSACHSIOTCSA B paMKaX MOAEAM PE30HAHCHBIX COCTO-
STHUI TAAAVSL C YYETOM CAOXKHOTO CTPOEHMSI BAAEHTHOI 30HbI. [TokasaHo, 4To mpeacTaBAeHMs 00 UAe-
AABHOM KPUCTAAA€ Y 30HHOI CTPYKTYpe B paMKaX OAHOJAEKTPOHHOTO NMPUOAVDKEHNSI HEAOCTATOYHO
AASI OOBSICHEHMSI 9KCIIEPYMEHTAABHBIX AAHHBIX 110 3¢ dexTy Xoaara. Heo6x0AMMO yunThiBaTh MOAUDY-
KaL[VI0 DHEPTeTUYECKOI0 CIIEKTPA C YYETOM CTaTMCTUYECKOTO paclpeAeAeHys puMeceit u AedeKToB
VI AOTIOAHUTEABHOTO B3aVIMOAEVICTBYS YaCTHL.

KaroueBnie caoBa: PbTe, sHeprernuecknii crieKTp AbIpok, mpumecu T1u Na, crabuansanys ypoBHs
®epmu, MoAMbUKaLIMS 30HHOTO CIIEKTPA

Aasi uutupoBanus: Nemov, S. A., Dashevsky, Z. M., Proklova, V. Yu., Mikhailov, N. A. (2023)
Energy spectrum of holes in highly alloyed PbTe. Physics of Complex Systems, 4 (4), 203—-209.
https://www.doi.org/10.33910/2687-153X-2023-4-4-203-209 EDN WRDYMW
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