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 Abstract . The article discusses a mesoscopic approach to the description of interfaces (IFs) in graphene. 
The approach is based on the representation of defective carbon rings with broken six-fold symmetry  
in hexagonal lattice of graphene as singular defects, i.e. wedge disclinations, in an elastic continuum.  
The angle of the sector inserted into or removed from the hexagonal lattice that results in the formation  
of localized quadrate, pentagon, heptagon, and octagon carbon rings, defines the strength (charge)  
of disclinations. The mesoscopic approach views IF in graphene as an ensemble of disclinations distributed 
along a line. Elementary building blocks for IFs with periodic motives of carbon atoms are structural units 
(SUs) containing disclination sets with zero total disclination charge. The junction of SUs of different type 
is considered as a virtual disclination. The approach works well in graphene when analyzing elastic fields 
and stored energies of IFs of two types: grain boundaries (GBs) that induce misorientation of neighboring 
domains of graphene lattice, and zero misorientation interfaces (ZMIs) that do not possess such a property.   

Keywords: graphene, crystal lattice defects, elastic continuum, disclinations, interfaces, structural units.
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Introduction

One of the most important scientific discoveries of the early 21st century is the successful production 
of graphene, a two-dimensional carbon crystal with a hexagonal lattice (Geim, Novoselov 2010).  
This fact, as well as the unique properties of graphene, gave rise to works on the synthesis, analysis and 
modelling of new two-dimensional materials with desired properties, see, for example, recent publica-
tions in Nature Communications (Tang et al. 2019) and Scientific Reports (Bravo et al. 2019;  
Wang et al. 2019). Graphene has high strength and plasticity (Frank et al. 2007; Lee et al. 2008), special 
electronic properties due to the presence of a Dirac cone in its band structure (Avouris 2010;  
Castro Neto et al. 2009), and a record high thermal conductivity (Balandin et al. 2008). These character-
istics allow to consider graphene as a material for next-generation electronics and optoelectronics.

Physical and mechanical properties of graphene are significantly affected by defects in its crystal  
lattice, in particular, linear defects—interfaces (IFs), see Ref. (Bagri et al. 2011; Ovid’ko 2013; Romanov 
et al. 2018). At present, there are well-developed atomistic methods for studying defects in graphene: 
molecular dynamics (MD) simulation technique operating with empirical interatomic potentials, and 
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Fig. 1. Defective carbon polygons in graphene lattice and their relation to disclinations.  
The strength ω  of positive and negative disclinations is denoted below the corresponding schematics

the density functional theory (DFT) approach based on first principle calculations for atomic systems. 
The other methods known as mesoscopic ones consider defects in a continuum with prescribed effective 
properties of graphene.

In our previous studies of defects in graphene we used both atomistic modelling methods and tools 
of the continuum theory of solids (Kolesnikova et al. 2017; 2020; Romanov et al. 2018; Rozhkov  
et al. 2016; Rozhkov, Kolesnikova, Hussainova et al 2018; Rozhkov, Kolesnikova, Yasnikov et al. 2018).  
In this work, based on the theory of disclinations in an isotropic elastic continuum, we use a mesoscopic ap-
proach to analyze graphene IFs.

Disclinations in graphene

In the framework of mesoscopic approach, a single carbon pentagon (five-member carbon ring)  
in otherwise hexagonal graphene lattice points to the core of a positive 60-degree wedge disclination. 
Indeed, the removal of the 60-degree wedge from the graphene lattice consisting of six-member carbon 
rings leads to the appearance of a wedge disclination with a strength of 60 / 3ω π= = + . The atoms 
nearest to the disclination point form a pentagon, and the entire graphene lattice is elastically distorted 
(Fig. 1). In a similar manner, one can imagine carbon quadrate (Fig. 1). Unlike the pentagon, the heptagon 
serves as the core of a negative 60-degree disclination, as its appearance is a consequence of the insertion 
of the 60-degree wedge into the hexagonal graphene lattice (Fig. 1). Embedding of 60n -degree wedge  
(n = 2, 3, ...) into graphene lattice leads to the negative wedge disclination of the corresponding strength 
with a core in the form of an octagon, a nonagon, etc. (Fig. 1) (Kolesnikova et al. 2017; Romanov et al. 
2018; Rozhkov et al. 2016; Rozhkov, Kolesnikova, Yasnikov et al. 2018; Harris 1977). 

Single isolated wedge disclinations cause enormous elastic distortions that scale logarithmically with 
the distance from their cores and have their energies proportional to R2, where R is the crystallite size 
(Romanov, Vladimirov 1992). In case of graphene sheets, the elastic energy diminishes when disclination 
approaches to the edge of the sheet that is similar to the screening of disclination elastic fields by a free 
surface in case of 3D-crystals (Romanov, Vladimirov 1992). Changing the geometry of the graphene 
sheet, i.e. the formation of a curved carbon shell, provides the release of disclination elastic energy.  
In the extreme case, closed spherical-alike carbon shell with twelve positive wedge disclinations  
of strength / 3ω π= +  each form fullerene macromolecule (Kolesnikova, Romanov 1998).

In the flat graphene sheet, disclinations of opposite sign can form self-screened configurations, whose 
energies do not depend on the crystallite size. Such configurations have zero disclination charge and 
zero dipole moment (Romanov, Vladimirov 1992):

 0i
i
ω =∑ , (1a)

 0i i
i
ω =∑ r , (1b)

where iω  is the strength of the i-th disclination in the ensemble, ir  is the radius-vector from the 
coordinate origin to the i-th disclination.
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Fig. 2. Typical structural units (SUs) of interfaces in graphene and their disclination schematics.  
The filled carbon rings belong to the shown SUs

Important examples of screened disclination configurations are disclination quadrupoles and their 
ensembles, for which the conditions (1a, b) are fulfilled, see, e.g. Ref. (Rozhkov, Kolesnikova, Yasnikov et al. 
2018). Interfaces in graphene consisting of periodic chains of disclinated carbon polygons (Ovid’ko 2013; 
Romanov et al. 2018) give other examples of screened disclination ensembles satisfying Eqs. (1a, b).

Interfaces in graphene
In our earlier work, see Ref. (Romanov et al. 2015), it was established that the grain boundaries (GBs) 

in graphene consist of structural units (SUs), which are well-defined motives (or combinations)  
of disclinated and regular carbon rings. Then the concept of SUs was extended to all periodic straight-
linear IFs in graphene (Kolesnikova et al. 2017; Romanov et al. 2018; Rozhkov et al. 2016).

Structural units of periodic interfaces in graphene
Figure 2 shows selected SUs from a wide range of possible SUs and their disclination schematics.  

The nomenclature for a SU includes numbers that denote the types of disclinated carbon rings, e.g. 
4—quadrat, 5—pentagon, 7—heptagon etc., and letters (sometimes with a number) denoting a modification 
for combining these carbon rings into a SU.

Structural units that may construct interfaces in graphene meet two major requirements:
(a) SUs have to form the interface without breaking the bonds and without changing the type of the 

bond (sp2 hybridization for graphene) when joining. Some SUs contain additional hexagonal carbon rings 
typical for the defect-free graphene crystal lattice, see SU 5-7, SU 5-8-5 A1, SU 7-4-7 with the shaded 
hexagons in Fig. 2. This allows to construct straight-linear interfaces.

(b) SUs have to obey the rule of Eq. (1a), i.e. they must have zero disclination charge. 
We note that the condition (1b) is not required for a single SU. This condition has to be satisfied when 

connecting SUs into the linear periodic chain—the interface. For example, SU 5-8-5 A1 and  
SU 7-4-7, according to their disclination schematics, are the disclination quadrupoles and, therefore, 
have both properties (1a, b) (Romanov, Vladimirov 1992; Rozhkov, Kolesnikova, Yasnikov et al. 2018), 
while SU 5-7, SU 4-8 and SU 5-8-5 D have property (1a), only.

Disclination schematics for interfaces in graphene
Figure 3 shows typical straight-linear IFs in graphene. These interfaces are composed of closely packed 

SUs shown in Fig. 2, they are marked correspondingly. Interface 5-7 is the so-called “favorite” grain 
boundary (GB) with misorientation angle 21.8θ =  , see, e.g. Refs. (Romanov et al. 2015; Zhang,  
Zhao 2013). All other IFs in Fig. 3 are zero misorientation IFs.

For each atomistic IF configuration, its disclination scheme is given. The splitting of IF disclination 
content into disclination quadrupoles is highlighted with dashed ellipses in the same Fig. 3. As a result 
of such subdivision, IF structure can be modelled with a set of periodically distributed disclination 
quadrupoles. Therefore, we conclude that in addition to the property defined by Eq. (1a) straight-linear 
IFs in graphene possess the property given by Eq. (1b). Note that SUs are not necessarily equivalent to 
the defined disclination quadrupoles in IFs, they are just building blocks for an IF atomistic structure 
whereas quadrupoles relate to the mesoscopic description of IFs. 
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Fig. 3. Straight-linear interfaces in graphene and their disclination content. In disclination schematics, 
quadrupole configurations are highlighted with dashed-line ellipses

Elastic fields and elastic energy of interfaces in graphene
Figure 3a gives mesoscopic disclination description of IFs. It allows to calculate their elastic fields: 

displacements, strains and stresses using analytical relationships of disclination theory (Kolesnikova 
et al. 2014; Romanov, Vladimirov 1992). For such calculations graphene elastic constants, i. e.  
Poisson’s ratio ν  and shear modulus G  have to be determined in experiments or be extracted from the 
atomistic simulations.

Defining disclination quadrupole content of IFs we estimate their elastic energies with the help  
of analytical formulas for quadrupole energies (Romanov, Vladimirov 1992). Starting with the energy  
of a single quadrupole one gets a rough approximate value for the energy per unit length  
of the interface, which can be then refined by accounting for the interactions of neighboring quadrupoles, 
next to the neighboring ones, etc. For example, IF 5-8-5 D energy per unit length will be 5 8 5 1.032DE − − =
eV/Å when accounting for the energy of a single quadrupole, and 5 8 5 0.757DE − − = eV/Å when consider-
ing pair interactions among disclinations quadrupoles. In this mesoscopic analysis we used Poisson 
ratio ν  and shear modulus G  found by the MD simulation with AIREBO potential of defect-free  
graphene: ν = 0.367 and G = 367 GPa, respectively. Atomistic MD modelling for the same interface gives 
the value 5 8 5 0.626DE − − = eV/Å. The above example demonstrates that the mesoscopic approach works 
quite well for the analysis of elastic properties of IFs in graphene.

Grain boundaries in graphene as the walls of virtual disclination dipoles 

According to the approach developed for metals (Gertsman et al. 1989; Nazarov et al. 1993) and  
applied to graphene (Romanov et al. 2015), each favored grain boundary (GB) consists of only one type 
of SUs; each arbitrary GB with a misorientation angle θ  consists of only two types of SUs belonging to 
the two nearest favored GBs, denoted as “r” and “r + 1”, with misorientations rθ  and 1r� �  (r = 1, 2…). 
Since the junctions of SUs with different misorientations by definition form disclinations, the structure 
of arbitrary GB is described as a wall of virtual disclination dipoles, in which the arm of the dipoles 
depends on θ  , and it is equal or multiples to dA or dB , where dA and dB are the lengths of SUs A and B 
corresponding to GBr and GBr + 1, respectively (Gertsman et al. 1989). 

In the mesoscopic disclination-structural unit model of the structure of arbitrary GB,  disclination 
dipoles will be distributed periodically with the shortest period A BH md nd= + , where m and n are the 
numbers of SUs forming the period, or the larger period kH kH= , where k is an integer. Inside the 
period the distribution of the disclination dipoles is nonuniform. The average misorientation angle can 
be determined with good accuracy from a simple expression:

 1A r B rmd nd
H

θ θθ ++
≅ . (3)

In the framework of the disclination-structural unit model, the total energy E per unit length of the 
GB in 2D crystal is calculated as the sum of three terms (Nazarov et al. 1993): 

 0 elastic coreE E E E= + + , (4)

where 0E  is the GB average interface energy, elasticE  is the elastic energy of the disclination ensemble, 
and coreE  is the energy of disclination cores. All energies are considered as the energies per unit length 
of GB.
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Fig. 4. Symmetrical tilt GBs in graphene, composed with structural units A, B (B’), and C.  
Favored GBs made of SUs of a single type with misorientation angles 0θ = 0°, 21.8°, and 60°;  

arbitrary GBs made of SUs of two types with misorientation angles 13.2θ = 13.2° and 26.1° 

Shown in left column in Fig. 3 and in Fig. 4 GB 5-7 is composed of SU 5-7 only, hence the description 
“favorite”. Using SU 5-7 of the two modifications B (B’), and structural units of the degenerate type, 
consisting of hexagons only, A and C, any geometrical configuration for arbitrary GB can be constructed, 
see examples of GBs with 13.2θ =   and 26.1θ =   in Fig. 4. Following this procedure we find the distribution 
of SUs and the disclination dipoles for GBs in graphene with the misorientation in the range 0–60 , which 
is divided by the favored GB into two intervals 0 21.8θ< <  and 21.8 60θ< < , see Fig. 4. 

Misorientation angle for any arbitrary GB is calculated using Eq. (3):

 A A B B

A B

md nd
md nd
θ θθ +

≅
+

, 0 21.8θ< < ,  (5a)

 B B C C

B C

md nd
md nd
θ θθ +

≅
+

,  21.8 60θ< < 

,  (5b)

where m  and n  are the numbers of the structural units in the period A BH md nd= +   
(or B CH md nd= + ) of GB, 0Aθ = , 21.8Bθ = , and 60Cθ = ; 3Ad a≈ , 21Bd a≈ , and 3cd a≈ , where 
a is the side size of a hexagon. 

The following simple relations for the contributions 0E  to the total energy for GBs with misorienta-
tion angle θ  in graphene can be proposed:

 0
A A B B

A B

md e nd eE
md nd

+
≅

+
,  0 21.8θ< < 

, (6a)

 0
B B C C

B C

md e nd eE
md nd

+
≅

+
, 21.8 60θ< < 

, (6b)

where interface energies per unit length 0A Ce e= =  and 5 7Be E −= . Other designations are the same 
as in Eqs. (5a, b). Energy 5 7E −

 is found from atomistic modelling.
As the final step the contributions elasticE  and coreE  are found with the help of analytical formulas  

of the disclination theory by considering a GB structure as the wall of the virtual disclination dipoles, 
see Ref. (Romanov et al. 2015) for detail.

Conclusions
We can conclude that the tools and techniques for the mesoscopic disclination description of IFs  

in graphene are effective both for determining the potential types of IFs and for calculating their elastic 
fields and energies. The continual theory of disclinations is especially effective in combination  
with atomistic modelling, when such parameters as the elastic moduli, IF period, etc. are found  
by MD simulation and used in the analytical formulas of the mesoscopic approach.



134 DOI: 10.33910/2687-153X-2020-1-4-129-134

 On mesoscopic description of interfaces in graphene

References

Avouris, P. (2010) Graphene: Electronic and photonic properties and devices. Nano Letters, 10 (11), 4285–4294. 
DOI: 10.1021/nl102824h (In English)

Bagri, A., Kim, S. P., Ruoff, R. S., Shenoy, V. B. (2011) Thermal transport across twin grain boundaries in polycrystalline 
graphene from nonequilibrium molecular dynamics simulations. Nano Letters, 11  (9), 3917–3921.  
DOI: 10.1021/nl202118d (In English)

Balandin, A. A., Ghosh, S., Bao, W. et al. (2008) Superior thermal conductivity of single-layer graphene. Nano 
Letters, 8 (3), 902–907. DOI: 10.1021/nl0731872 (In English)

Bravo, S., Correa, J., Chico, L., Pacheco, M. (2019) Symmetry-protected metallic and topological phases  
in penta-materials. Scientific Reports, 9, article  12754. DOI: 10.1038/s41598-019-49187-w  
(In English)

Castro Neto, A. H., Guinea, F., Peres, N. M. R. et al. (2009) The electronic properties of graphene. Reviews of Modern 
Physics, 81 (1), 109–162. DOI: 10.1103/RevModPhys.81.109 (In English)

Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., McEuen, P. L. (2007) Mechanical properties of suspended 
graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 
Processing, Measurement, and Phenomena, 25 (6), 2558–2561. DOI: 10.1116/1.2789446 (In English)

Geim, A. K., Novoselov, K. S. (2009) The rise of graphene. In: P. Rodgers (ed.). Nanoscience and technology:  
A collection of reviews from nature journals. London: Nature Publishing Group, pp.  11–19. 
DOI: 10.1142/9789814287005_0002 (In English)

Gertsman,  V.  V., Nazarov,  A.  A., Romanov,  A.  E. et  al. (1989) Disclination-structural unit model  
of grain boundaries. Philosophical Magazine A, 59 (5), 1113–1118. DOI: 10.1080/01418618908209841  
(In English)

Harris, W. F. (1977) Disclinations. Scientific American, 237 (6), 130–145.
Kolesnikova,  A.  L., Orlova,  T.  S., Hussainova,  I., Romanov,  A.  E. (2014) Elastic models of defects  

in two-dimensional crystals. Physics of the Solid State, 56 (12), 2573–2579. DOI: 10.1134/S1063783414120166 
(In English)

Kolesnikova, A. L., Romanov, A. E. (1998) A disclination-based approach to describing the structure of fullerenes. 
Physics of the Solid State, 40 (6), 1075–1077. DOI: 10.1134/1.1130490 (In English)

Kolesnikova, А. L., Rozhkov, М. А., Hussainova, I. et al. (2017) Structure and energy of intercrystallite boundaries 
in graphene. Reviews on Advanced Materials Science, 52, 91–98. (In English)

Kolesnikova, A. L., Rozhkov, M. A., Romanov, A. E. (2020) On fracture of pseudo-graphenes. Mechanics of Solids, 
55 (1), 69–76. DOI: 10.3103/S0025654420010124 (In English)

Lee,  Ch., Wei,  X., Kysar,  J.  W., Hong,  J. (2008) Measurement of the elastic properties and intrinsic  
strength of monolayer graphene. Science, 321  (5887), 385–388. DOI:  10.1126/science.1157996  
(In English)

Nazarov, A. A., Romanov, A. E., Valiev, R. Z. (1993) On the structure, stress fields and energy of nonequilibrium 
grain boundaries. Acta Metallurgica et Materialia, 41 (4), 1033–1040. DOI: 10.1016/0956-7151(93)90152-I  
(In English)

Ovid’ko, I. A. (2013) Mechanical properties of graphene. Reviews on Advanced Materials Science, 34 (1), 1–11.  
(In English)

Romanov, A. E., Kolesnikova, A. L., Orlova, T. S. et al. (2015) Non-equilibrium grain boundaries with excess energy 
in graphene. Carbon, 81, 223–231. DOI: 10.1016/j.carbon.2014.09.053 (In English)

Romanov, A. E., Rozhkov, M. A., Kolesnikova, A. L. (2018) Disclinations in polycrystalline graphene and pseudo-
graphenes. Review. Letters on Materials, 8 (4), 384–400. DOI: 10.22226/2410-3535-2018-4-384-400 (In English)

Romanov, A. E., Vladimirov, V. I. (1992) Disclinations in crystalline solids. In: F. R. N. Nabarro (ed.). Dislocations 
in solid. Vol. 9: Dislocations and disclinations. Amsterdam: North-Holland, pp. 191–402. (In English)

Rozhkov, М. А., Kolesnikova, А. L., Orlova, Т. S. et al. (2016) Disclinated rings as structural units in MD simulation 
of intercrystallite boundaries in graphene. Materials Physics and Mechanics, 29 (1), 101–105. (In English)

Rozhkov,  М.  А., Kolesnikova,  А.  L., Yasnikov,  I.  S., Romanov,  A.  E. (2018) Disclination ensembles  
in graphene. Low Temperature Physics, 44 (9), 918–924. DOI: 10.1063/1.5052677 (In English)

Rozhkov, M. A., Kolesnikova, A. L., Hussainova,  I. et al. (2018) Evolution of Dirac cone in disclinated  
graphene. Reviews on Advanced Materials Science, 57  (2), 137–142. DOI: 10.1515/rams-2018-0057  
(In English)

Tang, Y., Mak, K. F., Shan, J. (2019) Long valley lifetime of dark excitons in single-layer WSe2. Nature Communication, 
10, article 4047. DOI: 10.1038/s41467-019-12129-1 (In English)

Wang,  H., Huang,  C.-C., Polcar,  T. (2019) Triboelectrification of two-dimensional chemical vapor  
deposited WS2 at nanoscale. Scientific Reports, 9, article 12570. DOI:  10.1038/s41598-019-49107-y  
(In English)

Zhang, J., Zhao, J. (2013) Structures and electronic properties of symmetric and nonsymmetric graphene grain 
boundaries. Carbon, 55 (1), 151–159. DOI: 10.1016/j.carbon.2012.12.021 (In English)

https://www.doi.org/10.1021/nl102824h
https://www.doi.org/10.1021/nl202118d
https://arxiv.org/search/cond-mat?searchtype=author&query=Ghosh%2C+S
https://arxiv.org/search/cond-mat?searchtype=author&query=Bao%2C+W
https://www.doi.org/10.1021/nl0731872
https://www.nature.com/articles/s41598-019-49187-w#auth-1
https://www.nature.com/articles/s41598-019-49187-w#auth-2
https://www.doi.org/10.1038/s41598-019-49187-w
https://arxiv.org/search/cond-mat?searchtype=author&query=Guinea%2C+F
https://www.doi.org/10.1103/RevModPhys.81.109
https://www.doi.org/10.1116/1.2789446
https://doi.org/10.1142/9789814287005_0002
https://www.doi.org/10.1080/01418618908209841
https://www.doi.org/10.1134/S1063783414120166
https://www.doi.org/10.1134/1.1130490
https://www.doi.org/10.3103/S0025654420010124
https://pubmed.ncbi.nlm.nih.gov/?term=Lee+C&cauthor_id=18635798
https://pubmed.ncbi.nlm.nih.gov/?term=Wei+X&cauthor_id=18635798
https://www.doi.org/10.1126/science.1157996
https://www.sciencedirect.com/science/article/pii/095671519390152I
https://www.sciencedirect.com/science/article/pii/095671519390152I
https://www.doi.org/10.1016/0956-7151(93)90152-I
http://www.ipme.ru/e-journals/RAMS/no_13413/01_13413_ovidko.html
https://www.doi.org/10.1016/j.carbon.2014.09.053
https://www.doi.org/10.22226/2410-3535-2018-4-384-400
https://www.doi.org/10.1063/1.5052677
https://www.doi.org/10.1515/rams-2018-0057
https://www.doi.org/10.1038/s41467-019-12129-1
https://www.nature.com/search?author=%22He Wang%22
https://www.nature.com/search?author=%22Chung-Che Huang%22
https://www.doi.org/10.1038/s41598-019-49107-y
https://www.doi.org/10.1016/j.carbon.2012.12.021


135

Physics of Complex Systems, 2020, vol. 1, no. 4  
www.physcomsys.ru

Condensed Matter Physics. Polymer Physics

Introduction

Nowadays, well-developed synthesis methods make it possible to obtain polyimides (PI)  
with a very diverse chemical structure and molecular architecture and, consequently, with largely varied 
physical properties (Bryant 2002; Sroog 1969). There is a correlation between the polymer physical 
properties and the molecular mobility of the polar kinetic units. One of the methods to identify this 
correlation is dielectric spectroscopy. When the polymer system is studied by the dielectric method,  
the polar groups (“labels”) reorientation causes the temperature-frequency dependences of the dielectric 
absorption regions. This provides information on the polymer molecular mobility at all molecular 
organisation levels. In turn, molecular motion properties depend on inter- and intramolecular interactions 
determined by the polymer chemical structure and morphological features (Hedvig 1977; Riande,  
Diaz-Calleja 2004). At least three relaxation regions of dipole polarisation—the γ, β and α processes—
were detected using the dielectric spectroscopy for PIs with a largely varied chemical structure  
(Cheng et al. 1995; Chisca et al. 2011; Jacobs et al. 2010; Sun et al. 1992).

The research aim is to analyse the dielectric relaxation processes in the R-BAPS aromatic polyimide 
as well as to determine the molecular mobility mechanisms that cause dipole polarisation relaxations.

Experimental methods

The samples were thermoplastic polyimide films based on 1,3-bis- (3,3’-4,4’-dicarboxyphenoxy) 
benzene and 4,4’-bis- (4-aminophenoxy) biphenyl (R-BAPS) (Fig. 1) synthesised at the Institute  
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Fig. 2. The tgδ temperature dependences for R-BAPS at frequencies 0.1 (1), 1 (2), 10 (3), 100 (4), 1000 (5),  
10000 (6) and 100000 (7) Hz, the initial measurement and the measurement after warming up to 340°С (inset)

of Macromolecular Compounds, Russian Academy of Sciences (Smirnova et al. 2013; Svetlichnyi, 
Kudryavtsev 2003).

R-BAPS films were obtained from the 20% polyamide acid (PAA) solution, molecular weight  
Mw ~30,000 g/mol, dried at 60°C for 24 hours and subjected to stepwise heat treatment for 1 hour at 
100°C, 200°C and 300°C (Kamalov et al. 2020; Yudin et al. 2002).

The dielectric spectra (frequency dependences of the dielectric loss factor, ε// = ϕ(f )) were obtained 
in the frequency range 10–1–3 · 106 Hz and temperatures –100–+400°С using the “Concept-21” broadband 
dielectric spectrometer (Novocontrol Technologies GmbH) with an ALPHA-ANB high-resolution  
automatic frequency analyser. The ~25–40 μm films were pressed between brass electrodes (the upper 
electrode was 20 mm in diameter) at a ~30°С higher temperature than the glass transition temperature. 
For the first measurement, the films were additionally warmed up to 250°C (the initial samples). 

R-BAPS dielectric behaviour

The dielectric behaviour in the entire temperature range is shown in Fig. 2 which presents the tem-
perature dependences of tgδ = ϕ(T) for R-BAPS (for the initial sample) at various frequencies. Fig. 2 
shows three tgδmax regions: γ and β (in a glassy state) and α (in a highly elastic state) caused by the re-
laxation processes of the dipole polarisation, since the maximum temperature shifts towards high tem-
peratures as frequency increases. A sharp increase in the dielectric loss and tgδmax region due to the 
conductivity process was observed at temperatures exceeding the α process. Moreover, at 320°С there 
was a tgδ peak; the temperature did not change with frequency, while the intensity sharply decreased 
with frequency. This dielectric behaviour pattern is characteristic of a structural (non-relaxation) transition 
caused, in particular, by melting, which is confirmed by the DSC data (Kamalov et al. 2020). The tgδ peak 
at 320°С indicates a certain crystallinity of the initial sample. Heating the sample to 340°С (above the melt-
ing temperature) suppresses the structural transition at 320°С, as can be seen in the inset (Fig. 2).

Fig. 1. The R-BAPS chemical formula
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Fig. 3. The ε// frequency dependences in the γ (1–4) and β (5–8) process regions for R-BAPS at –100°С (1),  
–80°С (2), –60°С (3), –10 °С (4), 60°С (5), 100°С (6), 140°С (7) and 180°С (8).  

Symbols are experimental points. Continuous lines are the calculation according to the HN formula

The dielectric spectra were analysed by describing the complex dielectric constant ε* using the empirical 
Havriliak-Negami equation (HN), which, as a rule, reliably describes the dependences ε// = φ(f ) for various 
relaxation processes (Havriliak, Negami 1967):
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where ε* = ε/(ω) –  iε//(ω); ω = 2πf is the angular frequency; ∆ε = ε0 – ε∞ is the increment  
of the dielectric permittivity; τHN is the characteristic Havriliak-Negami relaxation time; αHN and βHN are 
the calculated parameters corresponding to the expansion and asymmetries of the relaxation time dis-
tribution, respectively, k is the number of the relaxation processes. 

Above Тg, the contribution due to conductivity was taken into account in the formula (1): 
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σdc is the direct current electrical conductivity, a is the constant, εv  is the dielectric constant of the 
vacuum (Vallerien et al. 1989); τmax was calculated by the following formula (Diaz-Calleja 2000): 
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Fig. 3 shows the dielectric spectra for R-BAPS at various temperatures in the γ and β process regions, 
which are reliably described by a single HN process.

In the highly elastic state, the polymer dielectric spectroscopy is usually described by the sum of two 
components—the α process and the contribution to the dielectric loss due to conductivity. In the case  
of the initial R-BAPS sample, the dielectric spectra in the 230–320°С temperature range can be described 
as the sum of three components: the α and αMWS (at lower frequencies) relaxation processes and the 
contribution due to conductivity. Fig. 4 shows several dielectric spectra in a highly elastic state and  
a spectrum separation into three components.

max 
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Fig. 5. The ε// frequency dependences in the αMWS (1–9) and α (10–18) process regions for R-BAPS  
(the initial sample) at 240°C (1.10), 250°C (2.11), 260°C (3.12), 270°C (4.13), 280°C (5.14), 290°C (6.15),  

300°C (7.16), 310°C (8.17) and 320°C (9.18)

Fig. 4. The ε// frequency dependences in the α and αMWS relaxation process regions for R-BAPS (the initial sample)  
at 240°C (1), 260°C (2), 280°C (3) and 300°C (4). Symbols are experimental points. Continuous lines are  

the description according to the HN formula. The dashed lines are the dielectric spectrum separation at 260°С  
into the α (2/) and αMWS processes (2//) and the contribution due to conductivity (2///) according to the HN formula.

Despite the fact that the αMWS process shows only a slight deviation from the linear increase in  
ε// in the low frequencies / high temperatures (LF/HT) range, its allocation from the spectrum according  
to the HN formula is quite reliable, as shown in Fig. 5 (ε// losses due to the conductivity are subtracted).

The τmax values calculated by the HN formula for R-BAPS (the initial sample) in the γ, β, α and αMWS 
process regions are shown in Fig. 6, curves 1, 2, 3 and 5, respectively. After heating above 340°С,  
the relaxation region corresponding to the αMWS process (curve 4) disappears; however, the relaxation 
time in the regions corresponding to the γ, β and α processes does not change.

For the γ, β and αMWS processes, the –logτmax dependencies on the inverse temperature are linear and 
are described by the Arrhenius equation:
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where τ0 = τmax at Т→∞, Ea is the activation energy, R is the universal gas constant.

max 
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Fig. 6. The –logτmax dependencies on the inverse temperature for R-BAPS (the initial sample) for the γ (1),  
β (2), α (3), αMWS (4) and SCP (5) processes. τmax points are calculated using the HN formula.  

Curves describe the dependencies according to the formulas 3 (1, 2 and 5) and 4 (3)

Table 1. Parameters of equation 3 for γ, β and αMWS processes

γ β αMWS

–lgτ0 14.7 20.34 14.95

Еа, kcal/mol 10.8 10.8 31.9

The linear dependence –logτmax = ϕ(1/T) indicates that the activation energy does not depend  
on the temperature.

For the α process, the dependence –logτmax = ϕ(1/T) is curvilinear and is well described by the empirical 
Vogel-Tammann-Hesse (F-T-H) equation, which describes relaxation processes where the activation 
energy depends on the temperature (Donth 2001; Vogel 1921):

   (4),

where τ0, B and Т0 are calculated parameters that do not depend on temperature  
(τ0 is the pre-exponential factor, B is the activation parameter and Т0 is the so-called Vogel temperature).

Molecular mechanisms of dielectric processes

Three relaxation processes—the γ and β processes in the glassy state and the α process in the highly 
elastic state—were found for R-BAPS as well as for the previously studied PIs with different chemical 
structure (Cheng et al. 1995; Chisca et al. 2011; Jacobs et al. 2010; Nikonorova et al. 2019; Sun et al. 1992). 
Molecular mechanisms were proposed for the γ, β and α processes. It was believed that the γ process  
is caused by the local mobility of phenyl rings in the diamine part of the macromolecule as well as by the 
mobility of the bound water molecules (Chisca et al. 2011; Jacob et al. 2010). For the γ process, the re-
laxation time did not depend on the polymer structure, and the temperature tgδmax was ~–100°С  
(at 1 Hz). For R-BAPS, the molecular source of the γ process is reorientation of the phenyl rings with 
the adjacent ether groups; therefore, the temperature tgδmax was ~–100°С (at 1 Hz). The equation (3) 
parameters are given in Table 1.

It was suggested that the molecular mechanism of the β process corresponds to mobility in the dian-
hydride macromolecule part (Chisca et al. 2011), rotation of the para-phenylene units in the diamine 
part (Sun et al. 1992) and correlated local movements in both macromolecule parts (Chisca et al. 2011; 

max 
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Jacobs et al. 2010; Sun et al. 1992). For the β process, the relaxation time depended on the sample 
chemical structure, thermal treatment and morphology, and the temperature tgδmax was in the 50–150°С 
range (at 1 Hz). Based on the R-BAPS chemical structure, it can be assumed that the β process is related 
to the local movements of the phenyl rings in the diamine and dianhydride macromolecule parts with the 
adjacent ether and amide polar groups. In other words, the β process is the superposition of several mo-
lecular mobility modes with close relaxation times that cannot be separated. For R-BAPS, the temperature 
tgδmax in the β process region was ~+75°С (at 1 Hz). The equation (3) parameters for the β process are 
given in Table 1.

The molecular source of the α process is the cooperative large-scale segmental mobility of  
a macromolecule related to the transition from the glassy to the highly elastic state. In this case, the 
temperature dependence –logτmax is usually nonlinear and the apparent activation energy varies depend-
ing on the temperature. In the α process region, the dependence –logτmax = ϕ(1/T) separates the glassy 
state region (on the right) from the highly elastic state region (on the left). The equation (4) parameters 
–logτ0, B and T0 for the α process are 11.6 s, 1564 and 421 K, respectively. For R-BAPS, the temperature 
dependence of the relaxation time is shown by curve 3. The glass transition temperature of R-BAPS is 
222°C. Tg was determined using the conventional dielectric method procedure—extrapolation of the 
–logτmax = ϕ(1/T) dependence described by the F-T-H equation logτmax = 0 (τmax = 1 s).

In polymers, a rapid increase in the dielectric loss is typically observed at temperatures above the α 
transition (in the highly elastic state) at HT / LF due to the space-charge polarisation (SCP).  
The SCP molecular source is the charges block on the electrode / sample surface which forms a double 
electric layer with large capacity that demonstrates huge values of ε/, ε// and tgδ. Moreover, the increment 
values of the dielectric permittivity (Δε) reach ~100...10 000 (Chisca et al. 2011; Lu et al. 2006; Neagu 
et al. 2000; Samet et al. 2015). The SCP effects are largely determined by the polymer purity (uncontrolled 
impurities, residual solvents and starting destruction of macromolecules in the polymer), rather than 
its chemical structure. Space-charge polarisation is considered a “parasitic” effect. During the polymer 
examination by the dielectric method, measures are taken to reduce it. The SCP temperature-frequency 
coordinates for R-BAPS are shown by curve 5 in Fig. 6, which is typical for this effect (Neagu et al. 2000; 
Samet et al. 2015). 

Along with the SCP effect, polymers with heterogeneous structure—such as polymer mixtures, two-
three-phase systems, nanocomposites and crystallising polymers—at HT / LF can demonstrate the 
Maxwell-Wagner-Sillars (MWS) polarisation, where the –logτmax = ϕ(1/T) temperature dependence lies 
between the α  process and the SCP effect (Chisca et al. 2011; Hedvig 1977; Klonos et al. 2017; Lu et al. 
2006; Neagu et al. 2000; Samet et al. 2015; Tsonos et al. 2001). The MWS polarisation arises due to po-
larisation at the phase boundary when microphases of such systems have different conductivity and 
permittivity values. For R-BAPS, the αMWS relaxation process, which is between the α  process and the 
SCP effect, demonstrates several features. Firstly, this process takes place in the interval from Tg up to 
the melting temperature. Above 3200C it disappears, while the α  process can be observed up to 3500C. 
Secondly, the Δε values of the αMWS process are ~7–12. Thirdly, the lgτmax = ϕ(1/T) dependence is linear 
(Fig, 6, curve 4, equation 3 parameters are given in the table), which is typical for the MWS polarisation 
(Klonos et al. 2017; Tsonos et al. 2001). These features suggest that the αMWS relaxation process is caused 
precisely by the Maxwell-Wagner-Sillars polarisation in the initial P-BAPS samples where melting is 
observed. The molecular mechanism of the αMWS process in R-BAPS is polarisation according  
to the MWS type at the boundary between the amorphous and the crystalline phases of the sample.  
This αMWS process is observed only in crystallising samples and disappears in the amorphous sample 
after heating above 320°С. Annealing at 280°С, at which the R-BAPS crystalline phase is formed (Smirno-
va et al. 2013), causes the αMWS process to reappear, i.e. this process is reproducible.

Conclusion

Thus, several relaxation regions of dipole polarisation, typical of the dielectric absorption pattern 
demonstrated by PIs with different structure, were identified by the dielectric method for aromatic 
thermoplastic PI R-BAPS in the –100–350°С temperature range. The dielectric spectra showed three 
maximum regions; these regions listed in order of increasing temperature are caused by local mobility 
in the diamine (the γ process) and joint movement in the diamine and dianhydride macromolecule parts 
(the β process), as well as the segmental cooperative mobility of macromolecules (the α process), 
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correspondingly. In a partially crystallised sample at temperatures exceeding the α process (at HT / LF), 
it was possible to see the αMWS process which reflects the polarisation at the interface between  
the amorphous and crystalline phases, i.e., the MWS type polarisation. The difference in the sample 
dielectric behaviour is that in addition to the γ, β and α processes observed in the amorphous sample 
(warmed above 320°С), the partially crystalline (initial) sample also demonstrates the αMWS process.
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Abstract. Superconducting properties and thermopower temperature dependences for two series of ceramic 
samples with Y0.75-xCaxPr0.25Ba2Cu3Oy (x = 0–0.25) compositions are experimentally investigated. Thermopower 
temperature dependences are analysed using the phenomenological narrow-band model. The normal state 
energy spectrum and the charge-carrier system parameters including the Fermi level position are determined 
and the doping influence on their value is discussed. It is shown that the Fermi level position  
in Y0.75-xCaxPr0.25Ba2Cu3Oy samples is determined by its pinning inside a local peak in the density-of-states 
function formed due to increasing calcium content. The influence of the observed normal-state energy 
spectrum modification on the critical temperature in the studied system is discussed.

Keywords: high-temperature superconductors, calcium doping, critical temperature, thermopower, narrow-
band model, normal-state energy spectrum, Fermi level.
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Introduction

The high-temperature superconductors (HTSC) were discovered more than 30 years ago; however, 
the electron pairing mechanism in these materials which results in anomaly high critical temperature 
values, Tc, is still not determined. Although different high-Tc superconductivity mechanisms have been 
proposed, none of them can be considered generally accepted. However, not only the superconducting 
properties of these materials seem unusual. Many HTSC properties not related directly to superconduc-
tivity and observable in the normal state are also not typical of standard objects in the solid state physics; 
for example, the electron transport phenomena. The characteristic temperature dependences of resistiv-
ity, ρ, thermopower, S, Hall, RH and Nernst, Q, coefficients make it impossible to describe and quantita-
tively analyse them based on the classical electron transport models developed for metals or semicon-
ductors (for early reviews, see Gasumyants 2001; Iye 1992; Kaiser, Ucher 1991; Ong 1990).  
It is obviously due to the structure of the normal-state energy spectrum in HTSC, but its main param-
eters remain to be not defined. This is why different models were suggested to explain the experimental 
results on the electron transport in HTSC-materials. One of them is the narrow-band model based on 
the assumption that the HTSC energy spectrum contains a narrow peak of the density-of-states function 
(Gasumyants et al. 1995). Unlike others, this model makes it possible to describe all the behaviour fea-
tures of the four transport coefficients using a common parameter set with a clear physical meaning.  
It can be used to determine certain energy spectrum and charge-carrier system parameters by analysing 
the experimental results regarding the thermopower temperature dependences in samples of various 
composition, and thus to investigate the parameter modification depending on the doping type and level. 

http://www.intphysiology.ru
https://orcid.org/0000-0002-5306-6738
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Studies on yttrium-based HTSC revealed the impurity that gives the system additional nontrivial 
properties not caused by other dopants. This impurity is calcium that replaces yttrium in the YBa2Cu3Oy 
lattice (Jirak et al. 1988; Manthiram et al. 1988; Tokiwa et al. 1988). The effect of calcium doping on the 
Tc value depends on the initial sample composition. In the case of the close-to-stoichiometric YBa2Cu3Oy, 
calcium suppresses its superconductivity (Fisher et al. 1993; McCarron III et al. 1989; Parise, McCar-
ron III 1989); however, in samples where the critical temperature was preliminary decreased by other 
factors (the oxygen deficit or the second introduced impurity), calcium can lead to the superconductiv-
ity restoration (Awana et al. 1996; Gasumyants et al. 1994; Gasumyants et al. 1998; Gasumyants, Elizaro-
va, Vladimirskaya et al. 2000; Komarova et al. 2013; Liu et al. 1990; McCarron III et al. 1989; Martynova, 
Potapov et al. 2011; Parise, McCarron III 1989; Vladimirskaya et al. 1995). Besides, calcium doping makes 
the thermopower temperature dependences acquire additional properties (most pronounced in double-
substituted systems) that are not observed if other substitutions are used (Elizarova, Gasumyants 1999; 
Gasumyants 2001; Gasumyants et al. 1998; Gasumyants, Elizarova, Patrina 2000; Ghorbani et al. 2003). 
Therefore, calcium-containing YBa2Cu3Oy system samples are very intriguing objects to study.

This paper presents the results of the study of the calcium doping effect on the critical temperature 
value and the thermopower behaviour in Y0.75-xCaxPr0.25Ba2Cu3Oy samples.

Samples and experiment
Ceramic samples with Y0.75-xCaxPr0.25Ba2Cu3Oy (x = 0–0.25) compositions were prepared by the stan-

dard solid-state technique from initial oxides or carbonates with purity higher than 99%.  
Their synthesis included three stages with intermediate regrinding and was performed in air. Thus, the 
initial sample series (series 1) was made. In order to obtain more extensive information on the calcium 
doping effect, we also studied an additional sample series of the same cation compositions that differs  
in conditions of the oxygen subsystem. Samples in this series (series 2) had maximum oxygen saturation 
due to their additional annealing in oxygen flow at T = 450ºC for 2 h. 

X-ray diffraction analysis showed that all the samples were almost single phase with foreign impuri-
ties not exceeding 1–2 %. The sample homogeneity was controlled by measuring the thermopower local 
values in various points on the sample surface at room temperature.

The resistivity and the thermopower were measured in the T = Tc–300 K temperature range.  
For resistivity measurements, the standard four-probe low-frequency ac (f = 20 Hz) method was used. 
The thermopower was measured by a differential method relative to copper electrodes at the temperature 
difference between the two ends of a sample about 2 K and then calculated by correction for the absolute 
copper thermopower. The measurement error for both transport coefficients did not exceed 5%.

Experimental results

The ρ(T) dependences for all the studied samples demonstrate a T-linear resistivity decrease with 
decreasing temperature in the whole measured temperature range that is typical of most YBa2Cu3Oy 
system HTSC samples, excluding very strong doping cases (Gasumyants 2001; Kaiser, Ucher 1991).  
The critical temperature values determined by the resistive measurements are shown in Figure 1.  

Fig. 1. Critical temperature vs. calcium content in Y0.75-xCaxPr0.25Ba2Cu3Oy samples
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Fig. 2. Thermopower temperature dependences in oxygen-saturated Y0.75-xCaxPr0.25Ba2Cu3Oy samples (series 2). 
Symbols are the experimental data; lines are the calculation results according to the narrow-band model

The Tc(x) dependences for both studied samples series are non-monotonic. When the calcium content 
is low, the critical temperature increases, but it starts to decrease with further increase in x. Besides, the 
position of the maximum on the Tc(x) curve depends on the oxygen subsystem condition. For series 2 
with a higher oxygen content, this maximum moves to a higher calcium doping level.

The S(T) dependences measured for series 2 are shown in Figure 2. They are typical for calcium-
containing samples of the YBa2Cu3Oy system. The thermopower demonstrates a maximum  
at a temperature well above Tc whose position depends on the specific calcium content. Further increase 
in temperature results in a linear thermopower decrease. It should be noted that the latter is the distin-
guishing feature of the thermopower behaviour when calcium ions are present in the YBa2Cu3Oy lattice 
(as for other impurities, the thermopower becomes almost temperature-independent at high tempera-
tures) (Gasumyants, Martynova 2017). Nevertheless, there is an additional characteristic feature in the 
S(T) modification under calcium doping in the studied system. In most systems, increased calcium 
content causes a T-linear region to appear on the S(T) curve and results in a gradual increase in the S(T) 
slope (Gasumyants, Martynova 2017). As seen in Figure 2, the S(T) slope in the Y0.75-xCaxPr0.25Ba2Cu3Oy 
system remains almost unchanged. This indirectly confirms our earlier conclusion that, if Ca and Pr are 
simultaneously introduced into the lattice, their influence on the YBa2Cu3Oy properties cannot be con-
sidered a simple summation of their individual influences because calcium and praseodymium ions 
interact with each other (Martynova, Gasumyants 2006; Martynova, Gasumyants, Babichev 2011).

Series 1 experimental S(T) dependences are analogous in quality to those of series 2, and thus dem-
onstrate all the properties described above. The only difference is the absolute thermopower value. Since 
the oxygen deficit is known to result in increased thermopower value, the S values at T = 300 K change 
from 6.6 to 16.4 mV/K for series 2 and from 14.2 to 20.3 mV/K for series 1.

Discussion

The experimental S(T) dependences were analysed within the narrow-band model (for the detailed 
model description see Gasumyants et al. 1995). Briefly, this approach is based on the assumption that 
the HTSC energy spectrum contains a single narrow band responsible for the conduction process or  
a sharp peak in the density-of-states function located near the Fermi level position. In this case, the 
simplest rectangular approximations can be used for the density-of-states, D(ε), differential conductiv-
ity, σ(ε), and Hall conductivity functions. Due to both the energy dependence character  
of these functions and a possible charge-carriers localisation at the band edges, the approximating rect-
angles should have rather different widths (Gasumyants et al. 1995). Besides, taking into account a pos-
sible D(ε) function asymmetry, the centres of rectangles approximating the D(ε) and σ(ε) functions should 
be shifted relative to each other. Within such approximations, the energy structure of the narrow con-
duction band is characterised by three parameters — WD is the total effective bandwidth, Wσ is the  
effective width of the delocalised states interval and b is the band asymmetry degree. The fourth needed 
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Fig. 3. Effective bandwidth vs. calcium content in Y0.75-xCaxPr0.25Ba2Cu3Oy samples

parameter is the band filling with electrons determined as F = n/N, where n is the total number of elec-
trons in the band and N is the total number of the band states. 

Based on the model-independent kinetic integrals and the above approximations for the D(ε) and 
σ(ε) functions, the following analytical expression is easily derived for the thermopower temperature 
dependence:

where:

  kB is the Boltzmann constant, e is the elementary change,  

µ is the electrochemical potential.
As shown by Gasumyants (2001) and Gasumyants et al. (1995), it is possible to obtain the calculated 

curves that describe the thermopower behaviour for HTSC samples with varied composition using dif-
ferent model parameter values in the above formulae. Fitting the experimental S(T) curves obtained for 
different samples into the above equation determines the model parameter values characterising the 
energy spectrum structure in each sample.

The described approach was used to analyse the experimental results and allowed us to achieve  
a good agreement between the experimental and calculated S(T) dependences for all the studied samples. 
To illustrate this agreement, several calculated S(T) curves are shown in Figure 2 together with the 
experimental results. The observed variations in the energy spectrum and charge-carrier system  
parameters in the Y0.75-xCaxPr0.25Ba2Cu3Oy system with increasing calcium content are discussed below.

Firstly, the band asymmetry degree for studied samples in series 1 and 2 with the same calcium con-
tent is almost equal. As the calcium content increases, the b value changes linearly and the 
b(x) dependence corresponds very well to the b ≈ –0.12 ∙ x relationship characteristic of other yttrium 
system calcium-containing samples (Gasumyants, Elizarova, Vladimirskaya et al. 2000; Gasumyants, 
Martynova 2017). Obviously, this is because it is calcium that causes the band asymmetry in YBa2Cu3Oy 
to appear due to additional states introduced into the conduction band.

Figure 3 shows the effective conduction bandwidth variation in two Y0.75-xCaxPr0.25Ba2Cu3Oy sample 
series. It shows that the bandwidth decreases almost linearly as the calcium content increases, and the 
WD value for samples in series 1 are always higher that for corresponding samples in series 2. Contrary 
to the studied system, if there is a single Ca→Y substitution in the YBa2Cu3Oy system, calcium doping 
results in a slight band broadening (Gasumyants 2001; Gasumyants, Martynova 2017). To explain  
the obtained results, it is necessary to take into account the following. Firstly, single praseodymium  
doping leads to a strong increase in the WD value due to hybridisation of Pr ion and band states  
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Fig. 4. The band filling with electrons vs. calcium content in Y0.75-xCaxPr0.25Ba2Cu3Oy samples

(Gasumyants et al. 1997) that results in high WD values for initial samples in both series. Secondly, in-
creasing oxygen deficit also leads to the WD rise, hence higher bandwidth values in series 1. Thirdly, as 
mentioned earlier, Ca and Pr ions interact when simultaneously introduced into the lattice. As a result, 
the Pr effect on the band structure gradually weakens as calcium content increases, causing the observed 
band narrowing in the studied system. Thus, the obtained WD(x) dependences can be explained consis-
tently taking into account the specific features of the influence of the studied impurities on the energy 
spectrum structure.

Figure 4 shows the variation of the band filling with electrons in two Y0.75-xCaxPr0.25Ba2Cu3Oy sample 
series. In general, the F(x) dependences for both sample series demonstrate a tendency to a linear de-
crease. This is characteristic of calcium doping because it increases the total number of states in the band 
by introducing additional states, and therefore decreases the degree to which it is filled with electrons 
(Gasumyants, Elizarova, Vladimirskaya 2000; Gasumyants, Martynova 2017). However, the F(x) depen-
dence in both sample series reaches a plateau at x = 0.125–0.15 for oxygen-deficient samples and 
x = 0.075–0.175 for oxygen-saturated ones. In order to clarify the reason underlying this fact, it seems 
reasonable to analyse the Fermi level movement in the studied systems. 

According to our analysis (Komarova, Gasumyants 2010), the low-temperature Fermi level position 
relative to the middle of the conduction band can be calculated as ЕF = (F − ½)WD − bWD. Calculation 
results are shown in Figure 5. The Fermi level remains almost constant in a wide calcium doping range, 
namely, at x = 0–0.2 and x = 0–0.175 for oxygen-deficient and oxygen-saturated series, respectively.  
As mentioned earlier, calcium ions form an additional peak in the D(ε) function. Two investigated 
sample series differ very slightly in the oxygen content; therefore, we can suppose that for the initial 
samples in both series the Fermi level is located in the energy range where the local calcium peak  
in the D(ε) function will be formed. If so, since a calcium-induced peak becomes more pronounced  
as x increases, the Fermi level is pinned inside this peak. When calcium content is high, EF moves outside 
this peak and shifts to lower energies. A minor difference in calcium content at which the pinning effect 
is observed in different sample series is explained by the influence of the slightly changing oxygen content 
on the starting (in calcium-free samples) Fermi level position in these two series. It should be noted that 
the Fermi level in the pinning range (4–6 meV, see Fig. 5) corresponds well to our previously drown 
conclusion that calcium-induced peak is located in the energy range 2–8 meV from the band middle 
(Komarova et al. 2013).

Thus, we can conclude that such properties as absolute thermopower and critical temperature values 
should be influenced by the Fermi level pinning inside the forming calcium-induced peak  
in the density-of-states function.

Finally, let us discuss the critical temperature variation in the investigated system. According  
to our previous results, the critical temperature in doped YBa2Cu3Oy is always affected by changes  
in the density-of-states function value at the Fermi level, D(EF). The main reason for these changes is  
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Fig. 5. Fermi level position vs. calcium content in Y0.75-xCaxPr0.25Ba2Cu3Oy samples

an impurity-induced variation of the conduction band width. It is confirmed by the fact that Tc and WD 
in doped YBa2Cu3Oy samples for most doping types fall well on the universal Tc(WD) correlation depen-
dence (Gasumyants 2001). However, in general, the D(EF) value in doped samples can be affected by 
several factors. In the Y0.75-xCaxPr0.25Ba2Cu3Oy system, it is necessary to take into account the following 
possible reasons for the D(EF) change: (1) the energy spectrum modification induced by the Pr introduc-
tion into the lattice; (2) Pr and Ca ions interaction; (3) the direct calcium effect on the energy spectrum 
structure, i.e., the formation of the Ca-induced peak in the D(ε) function; (4) the Fermi level position 
variation under doping including the effect of EF pinning inside the forming Ca-induced peak. Clearly, 
it is rather impossible to estimate quantitatively the resultant effect of all these factors have on the D(EF) 
value and, therefore, on the critical temperature. However, it is necessary to consider that the peak posi-
tions on the Tc(x) dependence in both investigated sample series correspond to the calcium content 
range in which the Fermi level pinning effect is observed. Therefore, it is possible to suppose that this is 
the D(EF) variation under calcium doping that results in the observed complicated Tc(x) dependences  
in the Y0.75-xCaxPr0.25Ba2Cu3Oy system.

Conclusions
This paper presents the experimental study results on the thermopower in two series of  

Y0.75-xCaxPr0.25Ba2Cu3Oy samples with different oxygen subsystem conditions and their quantitative analysis 
using the narrow-band model. The obtained results and conclusions can be summarised as follows. 

1) The critical temperature in the Y0.75-xCaxPr0.25Ba2Cu3Oy system changes insignificantly and non-
monotonically as the calcium content increases and its maximum position depends on the oxygen 
subsystem condition in the corresponding sample series.

2) Contrary to other calcium-containing systems, increased calcium content in the Y0.75-xCaxPr0.25Ba2Cu3Oy 
system does not lead to a rise in the S(T) slope and leads to a narrowing of the band responsible 
for the conduction process. Both these effects can be associated with praseodymium and calcium 
ions interaction that weakens hybridisation of the praseodymium and band states. 

3) The Fermi level position variation in the Y0.75-xCaxPr0.25Ba2Cu3Oy samples is related to its pinning 
inside the local calcium-induced peak in the density-of-states function formed as the calcium 
content increases. 

4) Although several factors affect the value of the density-of-states function at the Fermi level in the 
Y0.75-xCaxPr0.25Ba2Cu3Oy system, the observed variations in the critical temperature are determined 
by the D(EF) change under doping and can be explained by doping-induced modification of the 
normal-state energy spectrum under the Fermi level pinning effect. 
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Introduction

The specific properties of systems described by nonlinear equations have been known for a long time. 
One of the first works performed in the 19th century is the observation of solitons—solitary waves  
on the surface of water, as well as the study of the corresponding solutions of the Korteweg—de Vries 
equation. Currently, there are independent fields of study that focus on nonlinear waves and signals, 
such as nonlinear optics and nonlinear dynamics. Today, these fields of study develop largely due to the 
capabilities of modern computer technology, since it is the combination of analytical and computa-
tional research methods that allows us to advance in elucidating the qualitative features inherent in these 
phenomena. An overview of recent developments in the field of nonlinear dynamics can be found  
in (Gonchenko et al. 2017; Loskutov 2007). It should also be noted that the availability of sufficiently 
powerful computers and appropriate software allows us to set tasks related to non-linear systems  
as educational tasks at universities and even at school.

A characteristic feature of the system described by nonlinear equations is the occurrence of chaos at 
certain parameters of the system. Despite the determinism of solutions of the equations of classical 
dynamics, the nonlinearity of these equations leads to the fact that the state of the dynamical system  
is unpredictable after a characteristic time that determines the horizon of predictability.  
As noted by G. M. Zaslavsky and R. Z. Sagdeev in one of the first monographs on this topic (Sagdeev 
et al. 1988), since the trajectories of particles in phase space become in this case extremely complex and 
confusing, it is useless to monitor each trajectory separately. Instead, one should consider a set of tra-
jectories that at any time occupy a finite volume of phase space, and the distribution  
of particles in it is characterized by some density. 

http://www.intphysiology.ru
https://orcid.org/0000-0002-8702-9062
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Fig. 1. Model corresponding to the Duffing equation

Calculation of the probability density is a standard problem in statistical physics and quantum me-
chanics. It should be noted that the equations of quantum theory are linear. This leads to the fact that 
the evolution of a quantum mechanical system is in a certain sense deterministic. Naturally, this deter-
minism is different from what occurs in classical dynamics. Solutions of the equations do not make  
it possible to predict at what point in the phase space the system is located at some point  
in time. However, solving the equations makes it possible to determine the probability that the system 
under consideration is located in a given region of the phase space at a given time.

The question arises whether it is possible for systems described by classical dynamical equations 
whose solutions correspond to a chaotic state to formulate equations that determine the probability 
density, similar to the equations in quantum theory and statistical physics. It turns out that this can be 
done, at least for the simplest systems. Similar equations were obtained for a rotator in an external har-
monic field (Liapzev 2019). Numerical experiments show that solving equations for the probability 
density gives similar results to those obtained when solving dynamic equations. In this case, the equa-
tions for the probability density are linear, which is indicative of determinism similar to that given by the 
equations of quantum theory.

Linear properties of the equations of quantum theory cause other properties that are convenient for 
solving equations. In particular, at the beginning of the development of quantum theory, it was possible 
to formulate a perturbation theory that allows to effectively solve problems that cannot be solved ana-
lytically and to obtain qualitative consequences. If a small parameter can be selected in the problem, 
then the solution of the equations (wave function, probability density, average values of physical quanti-
ties) can be obtained as a power expansion of this parameter. However, if the equations for the probabil-
ity density of classical nonlinear systems in a state of chaos turn out to be linear, then in the presence of 
a small parameter, perturbation theory should also work, so that small perturbations should lead to small 
corrections. The average values of physical quantities should be represented as a small parameter expan-
sion. The paper provides an example of the simplest of such systems and tests its properties by a nu-
merical experiment.

The Duffing equation. Regular and chaotic solutions

The Duffing equations describe forced oscillations in a system with a W-potential. Note that the 
system is highly visual, so it may find use in the educational process (Kondrat’ev, Lyaptsev 2008). In real-
ity, it corresponds to a load that is located in the upper part of the elastic rod and swings in the same 
plane due to an external force (see Fig. 1). In the absence of external influence, the system has two stable 
equilibrium positions (b and d) and one unstable equilibrium position (c).

The oscillation equations have the form:

 3( ) ( ) ( ) ( ) sin( )x t x t x t x t F tγ α β ω+ − + =  .  (1)

In this equation, the constants α and β characterize the nonlinear elastic force, the constants F and 
ω—the amplitude and frequency of the external force, and the constant γ—the energy dissipation due 
to the non-conservative viscous friction force. 
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Equation (1) can be reduced to a system of three autonomous differential equations of the 1st order:

 3

,
sin ,
.

x
F x x
υ

υ ϕ α β γυ
ϕ ω

=
= + − −
=







  (2)

Since the system under consideration is dissipative, for any initial conditions, the region of phase 
space in which the state of the system is located narrows, over time, to the attractor. In the case  
of regular periodic solutions, the attractor is a closed loop in the phase space. However, for some  
parameter values, the solution tends to a chaotic (strange) attractor. The dimension of the strange  
attractor is fractional, and a set of points that is a fractal appears in the section of the phase space  
with a certain plane. A characteristic property of this system of equations is that with a smooth  
(adiabatic) change in the control parameter F, the state of the system jumps from chaotic motion to 
regular periodic motion.

The system of equations (2) has a certain symmetry. This means that the system of equations remains 
invariant with respect to some transformation of variables. In addition to the obvious symmetry 
ϕ → ϕ + 2π, there is a symmetry with respect to the set of transformations:

 , ,x x υ υ ϕ ϕ π→ − → − → + . (3)

Together with the identity transformation, this set of transformations forms a symmetry group iso-
morphic to the point group Cs. Note that a similar system can be considered in the equations of quantum 
mechanics. In this case, the non-stationary Schrodinger equation determines the eigenvalues of quasi-
energies, and the corresponding quasi-energy states are transformed by irreducible representations  
of the above group, that is, they are even or odd. In this classical case, equations (2) do not imply any 
properties related to symmetry due to the nonlinearity of the equations. However, numerical calculations 
(Liaptsev 2013; 2014a; 2014b; 2015) show that the Poincare sections of the phase space with parameters 
corresponding to the chaotic state are fully symmetric with respect to the transformations (3).

Probabilistic approach

Let us now define a density probability distribution ρ(ϕ, υ, x) as follows: for a given value ϕ the value 
Δw = ρ(φ, x, υ)ΔxΔυ is equal to the probability that the trajectory of the system passes in the region  
[x, x + Δx; υ, υ + Δυ] and the normalization condition is set:

.

Note that the density of the probability distribution can be approximately obtained by a numerical 
experiment. For this purpose, the section plane needs to be broken into cells , then we perform calcula-
tions x(t) and υ(t) over large enough time and put ρ for each cell which is proportional to the number of 
points that fell into the cell. 

The equation for the probability density can be obtained from the Hamilton equations for a classical 
mechanical system. The derivation of such an equation for a rotator in an external harmonic field is 
described in detail in (Liapzev 2019). Omitting the derivation of the equation for the system considered 
here, we give the final expression:

 . (4)

Equation (4) is a linear first-order partial differential equation. From the theory of differential equations 
(see (Kamke 1967)) it follows that there are systems of ordinary differential equations associated with  
a similar differential equation, which, in general, can be written as:

 1 2
1 2

1

( , ,..., )( , ,..., ) 0
n

n
n

x x xf x x x
xν

ν ν

ψ
=

∂
=

∂∑  . (5)
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The ordinary differential equations have the form:

 1 2( ) ( , ,..., ), 1, 2,...,nx t f x x x nν ν ν= = . (6)

Characteristic curves defined by the system of equations (6) are associated with solutions of equation 
(5). In particular, if ϕν(t) is the solution of a system of equations (6), then if, and only if, the function 

1 2( , ,..., )nx x xψ  is the integral of equation (5) when  1 2( ( ), ( ),..., ( )) constnt t tψ ϕ ϕ ϕ =  for any  
characteristic curve. It is easy to verify that in the case under consideration the system of equations that 
determines the characteristic curves of the equation (4) exactly coincides with the system of equations 
(2) that determines the dynamics of the system of interest.

One of the methods for solving equations of the form (5) is associated with finding characteristic 
curves. In our case it can be implemented as finding functions ρ(ϕ, υ, x) in the above numerical experi-
ment. However, this is not the only solution. The linear properties of equation (4) allow us to use the 
Fourier transform for its solution. Since all variables included in the equation are restricted to certain 
values, the Fourier transform reduces to a multidimensional (in this case, three-dimensional) Fourier 
series. The numerical solution of the equation can be obtained by restricting the series with some finite 
values, resulting in a system of linear equations. The accuracy of solutions increases with increasing 
values that limit the series. In paper (Liapzev 2019), it is shown that the solution obtained by the Fou-
rier transform method for the rotator equation gives a picture of the Poincare sections of the correspond-
ing chaotic attractor similar to the picture obtained by solving dynamic equations.

Perturbation theory for the probability density equation

As mentioned above, the linearity of the equations allows us to obtain their solutions and expressions 
for the average values of some operators in the form of power expansions of a small parameter. Let us 
denote the differential operator included in equation (4) by L:

then the equation takes a simple form:

We now add a small perturbation of the form λV, where V is a certain operator that depends on the 
variables ϕ, x, υ  and the corresponding partial derivatives, and λ is a small parameter introduced to 
obtain expansions in its powers. Find the function ρ(ϕ, υ, x) as a power expansion of this  
parameter:

  (7)

The maximum value of degree of parameter λ in expansion (7) is determined not so much by the 
accuracy with which the calculation is performed, but, rather, by the qualitative effects obtained at certain 
degrees of the parameter. For example, in the theory of molecular spectra, the effective small parameter 
included in the quantum molecular Hamiltonian is the Born—Oppenheimer parameter: , 
where m is the mass of the electron and M is the average mass of the molecule nuclei. In the zero 
approximation for this parameter, the electronic, vibrational, translational, and rotational motions of the 
molecule are separated, and the effects due to the interaction of these motions are manifested in certain 
degrees of expansion of eigenvalues and eigenfunctions on this parameter (Kiselev, Lyapcev 1989).

Finding the terms of the expansion (7) is reduced to a sequential separation from the equation:

  (8)

equations for a given degree of the parameter λ. In zero order, we get the equation:
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corresponding to equation (4). The equation of the 1st order:

allows us to find the first term of the probability density expansion:

where L–1 on the right side of the equality is the inverse operator of L. Similarly, the following terms 
of the expansion of the function ρ(ϕ, υ, x) can be found.

The solution of the problem by the perturbation method is thus reduced to finding some inverse 
operators that appear in equations of a given order. In quantum theory, such operators are found as  
a result of expansion of functions on the eigenfunctions of an unperturbed operator. Here, other  
methods can be used, for example the Fourier transform mentioned above. It is important that the aver-
age value of any operator can also be obtained as a power expansion of a small parameter:

  (9)

Despite the fact that formally the decomposition of the average values of operators begins with zero 
order over a small parameter, the symmetry properties of the systems under consideration can lead to 
zero values of the first few terms of the decompositions of some operators. In particular, the zero term 
of the expansion turns out to be zero if the corresponding operator is not transformed by  
the full-symmetric representation of the symmetry group of the system under consideration. 

Turning to the problem we are considering, it is easy to notice that one of the operators that is 
transformed by the odd representation of the Cs group is the operator of coordinate x (see transformations 
(3)). It follows that the average value of the x coordinate for the chaotic state of the system described by 
the Duffing equation turns out to be zero. A numerical experiment confirms this conclusion. Calculating 
the average value for a finite time interval gives an average of zero, although due to the statistical properties 
of the state under consideration, each value differs slightly from zero, that is, there are fluctuations in 
the zero-average value. A non-zero mean value of the coordinate should be obtained if a perturbation is 
added to the unperturbed operator L, which disturbs the symmetry of the system. One can offer several 
similar operators. One of these operators is the operator corresponding to adding an odd degree to the 
W-potential. This corresponds to adding an even degree to the corresponding potential force. Accordingly,  
the perturbation operator included in equation (4) will have the form:

  (10)

It is easy to verify that the operator changes its sign during transformations (3). Another possible way 
to break the symmetry is to add a component with doubled frequency to the external driving force:

Accordingly, the perturbation operator included in equation (4) will have the form:

  (11)

Note that a linear combination of these operators can be used as a perturbation. Then the first order 
corrections to the average value of the x coordinate will be expressed as a linear function of the corresponding 
small parameters. In the second order of the perturbation theory, corrections that are a quadratic function 
of small parameters will appear, and so on.

We denote small parameters for operators V1 and V2 by λ1 and λ2. Then the system of equations (2) 
takes the form:

 3 2
1 2sin sin(2 )

x
F x x x
υ

υ ϕ α β γυ λ λ ϕ
ϕ ω

=
= + − − + +
=







, (12)

and the equation for the probability density is:
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Table 1. Calculation results for F = 5.4

Values of coefficients Absolute error Relative error

Calculation for λ2 = 0 and variation of λ1 y1 = 0.344 Δy1 = 0.005 δy1 = 0.01

Calculation for λ1 = 0 and variation of λ2 y2 = –0.36 Δy2 = 0.02 δy2 = 0.04

Calculation for variation of λ1 and λ2

y1 = 0.301
y2 = –0.37

Δy1 = 0.004
Δy2 = 0.01

δy1 = 0.016
δy2 = 0.03

  (13)

The average values of the x coordinate can be calculated either by applying perturbation theory to 
equation (13) and then using averaging by formula (9), or by solving the system of equations (12) and 
then averaging the function x(t) over time. Note that it does not follow from the system (12) itself that 
in the case of a chaotic solution of the system, averaging the coordinate over time for different values of 
λ1 and λ2 will give a linear function of these parameters. Thus, a numerical experiment consisting in 
obtaining the average coordinate value by solving the system (12) is actually equivalent to  
a real experiment in relation to proving the applicability of the equation for probability density to the 
system described by the Duffing equation.

Results of a numerical experiment
We present the results of a numerical experiment for the next values of the parameters included in 

the system of equations (12): α = β = 1, ω = 1.2, γ = 0.1. The value of the parameter F was chosen in such 
a way that the solution of the system of equations remained chaotic in a certain range of parameters λ1 
and λ2. Collapse to a regular (periodic) solution for certain values of parameters led to the fact that the 
corresponding solution was unsuitable for conducting a numerical experiment, since the equation for 
the probability density is not applicable if the attractor of the equations is a closed line. Below we present 
the results of a numerical experiment for the values: F = 5.4 and F = 8.7. In both cases, the averaging was 
performed over a time interval equal to 10.000 periods of external force, respectively: Δt = 5.236 · 104.

The results of the numerical experiment can be represented as:

where the coefficients y1 and y2 were determined from the calculated values for a certain set of pa-
rameters λ1 and λ2 by the method of least squares. The least squares method also makes it possible to 
identify the error in determining these coefficients.

Results for F = 5.4.
Parameter λ1 changed from –0.4 to 0.4 in increments of 0.1, parameter λ2 changed from –0.15 to 0.15 

in increments of 0.05. The results are shown in Table 1.
The deviations of the calculated values from the plane defined by the parameters y1 and y2 can be 

clearly seen in Fig. 2, where the calculated values are shown in circles.

Results for F = 8.7.
Parameter λ1 changed from –0.4 to 0.4 in increments of 0.1, parameter λ2 changed from –0.6 to 0.6 

in increments of 0.2. The results are shown in Table 2.

Table 2. Calculation results for F = 8.7

Values of coefficients Absolute error Relative error

Calculation for λ2 = 0 and variation of λ1 y1 = 0.70 Δy1 = 0.02 δy1 = 0.03

Calculation for λ1 = 0 and variation of λ2 y2 = –0.25 Δy2 = 0.01 δy2 = 0.04

Calculation for variation of λ1 and λ2

y1 = 0.76
y2 = –0.26

Δy1 = 0.01
Δy2 = 0.01

δy1 = 0.02
δy2 = 0.03
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Fig. 3. The deviation of numerical results from the linear dependence at F = 8.7

Fig. 2. The deviation of numerical results from the linear dependence at F = 5.4

The deviations of the calculated values from the plane defined by the parameters y1 and y2 can be 
clearly seen in Fig. 3, where the calculated values are shown in circles.

As can be seen from the above results in a good approximation, with an accuracy of several percent, 
a linear dependence of the average values of the x coordinate on the parameters λ1 and λ2 is observed.
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Conclusion

The results of the numerical experiment show that small perturbations in the system described by 
the Duffing equation lead to a linear dependence of the average values of physical quantities on small 
parameters that characterize the perturbation in the chaotic behavior of solutions. This indicates the 
applicability of perturbation theory to such systems for chaotic solutions. This fact, in turn, can be ex-
plained by the fact that the chaotic state of the system can be characterized by a probability density that 
satisfies the linear equation. Due to the linearity of this equation for small perturbations, the probabil-
ity density, and, consequently, the average values of physical quantities can be represented as a decom-
position in small parameters that characterize the perturbations.

The fact that the chaotic state of a system described by nonlinear dynamic equations can be charac-
terized by a probability density indicates that, despite the non-determinism of classical solutions, in the 
sense of probability, the chaotic regime is determined to the same extent as the state of the system de-
scribed in the language of quantum theory.
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Introduction

Development of nanotechnology and miniaturization of electronic devices causes the necessity to 
take into account quantum properties of electron. It is a challenge, yet, it opens a possibility of designing 
novel devices based on quantum principles. One of such promising developments is a quantum computer. 
Currently, there are a few quantum computers in operation, however, they are very complicated and are 
not effective enough. Existing quantum computers can operate with a small number of quantum bits. 
The scaling of such devices is a great challenge. A possible solution to this challenge lies in the background 
improvements, e.g. in the use of triadic logic devices. The paper proposes a quantum multiplexer for the 
triadic logic device and develops a model to describe its processes. It deals with a system of coupled 
quantum waveguides (quantum wires) and quantum resonators (quantum dots). To describe the electron 
transmission through the system, we suggest using a model of zero-width coupling windows which has 
some advantages. Namely, it is solvable, i. e. it yields analytical results. On the other hand, its properties 
are similar to those of the corresponding physical system. The model has proven to be effective  
in many cases, see (Pavlov et al. 2001; Popov, Popova 1993a). 

The paper focuses on two-dimensional quantum mesoscopic systems, i. e. the physical systems where 
the electron phase coherence is preserved at a scale much larger than the atomic dimensions.  For such 
systems, quantum properties play an important role (Landauer 1957; Sols et al. 1989; Takagaki, Ploog 
1994). The studies of low-dimensional systems usually rely on the Landauer-Buttiker theory  
(Beenakker, van Houten 1991; Buttiker 1993; Landauer 1970) with its direct relation between  
the conductivity and the transmission coefficient for ballistic channels.
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Abstract. The paper explores the system of quantum waveguides and resonators. It suggests a solvable model 
of zero-width coupling windows based on the operator extensions theory in the Pontryagin space with 
indefinite metrics. The model self-adjoint operator is constructed explicitly, and it is similar (in some sense) 
to that of a physical system. We obtain an expression for the transmission coefficient for electrons and 
investigate its dependence on the electron energy which has a resonant character. It allows to control the 
electron transmission to different waveguides. The paper proposes a model of a three-channel quantum 
mesoscopic multiplexer.
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We consider waveguides connected with resonators through small apertures. It is very difficult to 
give a full description of such system (Exner, Kovarik 2015; Nazarov et al. 2019). For this reason,  
we propose an explicitly solvable model which preserves the main features of the corresponding real 
system. The model is analogous to the zero-range potential approach in quantum mechanics (Albeverio 
et al. 2005; Pavlov 1987). It is based on the theory of self-adjoint extensions of symmetric operators.  
The model of resonators coupled through small openings was suggested in (Melikhova, Popov 2017; 
Popov 1992; 1997; 2013). Resonance effects in the waveguide-resonator-waveguide system in the frame-
work of the model were the focus of (Popov, Popova 1993a; 1993b).

The paper is structured as follows: the first section provides a brief overview of a general mathematical 
scheme; section two focuses on the implementation of the model for the system of a branching quantum 
waveguide with inserted quantum resonators; finally, we discuss a possibility to apply the model  
to the development of a nanoelectronic device.

General mathematical scheme

The conventional operator extension theory approach to the description of resonators coupled through 
small windows may be found in (Vorobiev et al. 2019). Let us consider two domains Ω1, Ω2  with smooth 
boundaries having a common point r

0
. The initial self-adjoint operator for the model construction is the 

orthogonal sum of the Laplace operators in the domains. The next steps depend on the boundary condi-
tions. In the case of the Neumann boundary conditions, the restriction of the operator on the set  
of functions vanishing at point r

0
 gives a symmetric non-self-adjoint operator with deficiency indices 

(2,2). Correspondingly, a self-adjoint extension of the operator may be constructed. It is the operator 
which gives us the model in question. In the case of the Dirichlet boundary conditions, the restricted 
operator is essentially self-adjoint, i. e. it has deficiency indices (0,0). To construct the model for this 
boundary condition, it is necessary to extend the space L2 by adding elements with greater singularities 
at the point r

0
. As a result, we have to deal with the Pontryagin space. 

Let us briefly describe the model for the Dirichlet case (Popov 1992) using an indefinite scalar  
product. Let Δ1,2 be the Laplace operators with the Dirichlet boundary conditions in the domains Ω1,2 

with smooth boundaries having a common point r
0
. There are two ways of including functions with 

higher singularities into the space: either considering weighted space or deal with an indefinite scalar 
product. We follow the latter. Let us consider the following function:

which does not belong to L2. Here, G1,2 is the Green function for the Dirichlet problem in Ω1,2.  
Let us define the following set of functions:

Functions from this set have roots of at least first multiplicity at r
0
. It is necessary to ensure the integral 

convergence. Let us consider a pair of functions:

Here k0 is some imaginary number (k0
2 = λ0 is a regular point of the Laplace operator in Ω1,2).  

Now, we introduce another set of functions having singularities Ã1,2:

.

Here, the first term in the right-hand side is smooth: f 1,2 ∈  Ã  1,2 . It is necessary to define  
a scalar product in Ã1,2. It can be made in the following way:
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The set Ã1,2 is not yet a full space. It is embedded into the Pontryagin space Π1 by conventional way 
(Derkach et al. 2003; Popov 1992; Shondin 1988; van Diejen, Tip 1991).

Now, it is necessary to define the Laplace operator in this extended space. Let the domain  
of the operator  have the form: 

Here, f1, . On the set A1 the operator  acts as the Laplace operator and on the chain 
 the operator  is a shift operator: . One can prove that the operator  is self-

adjoint.
 The next step of the model construction is the so-called “restriction-extension” procedure.  

Let us restrict the operator  onto the following set:

The obtained operator   is symmetric and has deficiency indices (1,1) in the Pontryagin space.  
The construction procedure for the second domain for Ω2  is the same. Correspondingly, the orthogonal 
sum   is a symmetric operator with deficiency indices (2,2). Its self-adjoint extensions are 
restrictions of the adjoint operator. It is easy to describe the domain of the adjoint operator:

Here, To construct a self-adjoint extension one should find a linear set  
of elements from  satisfying the self-adjointness condition:

One can see that elements of  are such elements from that satisfy the condition 
Taking into account the known asymptotics of the Green function near the boundary point, we obtain 
the following:

Geometrical treatment of Lagrange planes leads to the following statement:

Theorem 1 . The set of self-adjoint extensions of the operator –Δ0  consists of the sets of operators 
{–Δ

A 
}, {–Δ

B 
},  the domains of which consist of all elements from D(Δ*

0 ) satisfying the conditions

or

inhere A, B are Hermitian matrices.

Remark. We have no goal to describe all possible extensions. We deal with one extension only  
corresponding to the following matrix (Popov 1992).

  (1)
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The system of coupled waveguides and resonators

Let us consider the problem of electron scattering in the system of coupled quantum waveguides and 
resonators (Fig. 1). The construction of the model operator is the same as in the case of the two coupled 
domains described above. 

Fig. 1. The geometry of the system. Coupling points are marked

We choose “the most natural” extension (see remark at the end of the previous section).  
In this case the solution of the scattering problem for the model operator has the form:

  (2)

Here G
j
(r, r

j
, k) is the Green function for the Dirichlet problem in Ω

j
,r = (x, y), ψ

0
 (r, k) is the solution 

of the scattering problem for a semi-infinite waveguide Ω
1
 without point-like coupling windows  

(the sum of incoming and reflected waves), α
mn

 are coefficients to be determined. Taking info account, 
Theorem 1 and (l) one obtains the following linear system for α

mn
:

 
  (3)
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here

 

k
0
 is a model parameter. To choose it, one can compare the solutions of the model and realistic problems. 

This analysis showed (Popov 1992; 2013) that small width corresponds to large k
0
. Moreover,  

it is possible to choose the parameter in such a way that the model solution gives one the main asymp-
totic term (in the width of the window) of the corresponding realistic problem. We assume  
that all coupling windows are identical, in opposite case, it is necessary to introduce several parameters 
k

0j
 (one for each window). The expression for  for a semi-infinite waveguide is well known:

 

where  x* is a mirror image of the point x with respect to the end of the waveguide. Expression  
for g

2
(r

12
,k) (and, correspondingly, for g

4
(r

14
,k), g

3
(r

13
,k)) is

 

One can solve system (3) and obtain coefficients α
25

, α
36

, α
47

, which give us the transmission coefficients 
for channels Ω

5
, Ω

6
, Ω

7
, correspondingly.

Discussion

Let us consider the particular case for which the calculations were made. Let d
5
= d

6
= d

7
= d

1
/3, and 

l
2
, l

3
, l

4
 differs slightly. Let us compute transmission coefficients, i. e. the squares of modulus of coefficients 

α
25

, α
36

, α
47

,  as functions of the electron energy (k2) for this particular case to show the possibility of us-
ing the suggested construction. The dependences have a resonant character. There are resonant peaks 
when k2 is close to an eigenvalue of the corresponding resonator (see Fig. 2). The calculations were made 
for the first two resonant peaks for d

5
= d

6
= d

7
=3, l

2
=1, l

3
=1.1, l

4
=1.2 (in dimensionless units). This effect 

can be used for construction of a mesoscopic quantum device. 
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Fig. 2. Transmission coefficients to waveguides 7 (a), 6 (b), 5 (c) via the electron energy k2  (dimensionless units)

Namely, if electron energy is close an eigenvalue of the resonator Ω
2
 we have a resonant transmission 

to the channel Ω
5
 and almost zero transmissions to other channels. Varying electron energy we can 

obtain resonant transmission to the channel Ω
6
 (or Ω

7
) with zero fransmissions to other channels.  

We choose resonators with sizes which change slightly. Hence, small variation of k2 leads to switching  
of a signal from one channel to another. Here the control parameter is electron energy. 

Another control parameter can be used as well. For example, one can control resonant condition  
by changing parameters of resonators, or widths of coupling apertures. This can be made by varying the 
corresponding bias voltage.

In the suggested construction we use resonant properties of coupled resonators, but it is possible  
to use resonant properties of coupling apertures itself. The existence of such properties was shown for 
a system of waveguides coupled through small windows in (Popov, Popova 1993a; 1993b) (for the model) 
and in (Vorobiev et al. 2019) (for a realistic problem). A possible construction based on this effect will 
be developed and described in the nearest future.
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Introduction

A magnetic skyrmion (Sk) is a localized non-collinear state that has been observed, in particular,  
in thin films of 3d metals on the surface of heavy metals (Hagemeister et al. 2015). The small size and 
high mobility under the action of ultra-low current density make this system attractive for use in spintronic 
applications. Sks, like particles, can move freely in a magnetic film while maintaining their size and shape.  
For their practical use, it is important to be able to localize Sks in a certain area and move them along  
a definite trajectory. This can be achieved by a local change in the strength  of the magnetic interactions 
or values of those  magnetic moments in the media where the Sk is located. Elongated domains  
(Castell-Queralt et al. 2019) or sample boundaries (Zhang et al. 2015) provide “rails” for the movement 
of the skyrmion, while local point defects can lead to the formation of a center of attraction or repulsion, 
or to anchoring the Sk in a certain place (Stosic et al. 2017).

Local point defects can affect the current-induced motion of Sks. Calculations have shown that the 
introduction of local anisotropy in some sites of the two-dimensional lattice does not change  
the Sk velocity/current ratio (Iwasaki et al. 2013), but nonmagnetic local impurities change the trajectory 
of Sks and can pin them, so that a small current will not move the skyrmion along the sample at all  
(Müller, Rosch 2015).
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Nonmagnetic defects also change the activation energy for skyrmion annihilation and nucleation 
from a ferromagnetic state. Consequently, it may turn out that most of the Sks that will be produced  
by recording devices will be localized (Romming et al. 2013).

A non-magnetic defect modifies the energy surface of the system and reduces the energy  
of the transition state. The inclusion of an external magnetic field also leads to a change in the shape  
of the energy surface, which also reduces the stability of the Sk if the field is directed antiparallel to the 
magnetization in the skyrmion core (Uzdin et al. 2018). In this paper, we include both factors and study 
the field dependence of the energy surface of a Sk localized at a nonmagnetic defect.

Model and methods

A thin magnetic film was modelled in a Heisenberg type model with a triangular lattice. Energy E  
of a magnetic state is given by

  (1)

Here J is the exchange parameter, which is assumed to be non-zero only for the nearest-neighbor 
sites,  is the Dzyaloshinskii-Moriya (DM) vector laying in a plane orthogonal to the line connecting 
atomic sites i and j. The vector of anisotropy is perpendicular to the lattice plane along the z-axis.  
K > 0 is the constant of easy axis anisotropy. Magnetic field  is directed along the magnetization  
in homogeneous ferromagnetic state.  are three-dimensional vectors of unit length along the magnetic 
moment on site i; µ is the magnitude of the magnetic moments.

A single site is assumed to be a nonmagnetic impurity. The summation < i, j > in (1) is taken over all 
pairs of the nearest neighbor sites in the triangular lattice excluding the impurity. The values of the 
parameters taken from (Hagemeister et al. 2015) correspond to the experimentally observed skyrmions  
in the Pd/Fe/Ir(111) system, , , , (meV).

The system supports the Neel (hedgehog) Sk slightly disturbed by the presence of impurity.  
We considered a strip of a triangular lattice containing 80 × 61 atoms with periodic boundary conditions, 
which is large enough to host an isolated skyrmion, namely, the energy perturbation due to self-interaction 
across the boundary is about 0.0002%. The dipolar interaction or the demagnetizing field is not taken 
into account, since the Sks under study have a diameter less than 4.6 nm (the lattice constant  
for Fe / Ir (111) is 0.27 nm). The impurity is a local disturbance, which should not be affected by the 
demagnetizing field.

The metastable states of Sks were calculated numerically using the conjugate gradient method  
in Cartesian coordinates (Lobanov, Uzdin 2020). The transformations of a magnetic Sk localized  
on an impurity were studied by calculating the minimum energy paths MEPs between the Sk state and 
the other (meta) stable states on the energy surface of the system. The MEPs were calculated using  
the geodesic nudge elastic band method (Bessarab et al. 2015). 

Localization of an Sk on an impurity in the external magnetic field

The appending of a non-magnetic impurity to the ferromagnetic phase creates an energy vertex around 
this magnetic defect that repels Sks nearby. However, if the distance from the impurity to the Sk center 
is approximately equal to the Sk radius, then the Sk is pinned to the impurity, see Fig. 1a, c. The energy 
landscape has a local minimum for a specific location of the impurity, and the Sk must overcome the 
activation barrier for the dissociation from the impurity. The equilibrium positions of the defect correspond 
to the plane orientation of the magnetization Sz = 0 and form a “ring”. This behavior has been observed 
experimentally using the scanning tunneling microscopy technique (Hanneken et al. 2016).

We found out that for the external magnetic field weaker than a critical value Bc there exists another 
possibility for pinning, when the impurity is located exactly in the center of the Sk, see Fig. 1b. For such 
weak fields, the magnetization in the central part of the Sk is almost uniform and opposite  
to the magnetization in the ferromagnetic phase, however, the local maximum of energy density is formed 
in the Sk center. According to our numerical simulation μB

c
= 0.067 J, for the parameters under consideration. 

For larger B > Bc, the impurity in the center is not a stable position and the Sk domain wall is attracted 
by a nonmagnetic hole.
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Fig. 1. An isolated Sk with the impurity in the boundary (panels a, c) and in the center (b) for μB = 0.093 J (panel a) 
and μB = 0.046 J (b, c). The Sk with the impurity in the center is metastable only for B below the critical field  

μB
c 
= 0.067 J, whereas the impurity at the boundary is metastable down to μB = 0.13 J,  

and the skyrmion without impurities is stable down to μB = 0.21 J

Fig. 2. (a) The minimum energy paths between the states with an impurity in the Sk center and at the Sk boundary  
for a magnetic field range of 0.046 J ≤ μB ≤ 0.067 J. The zero energy corresponds to the skyrmion  

with the impurity at the boundary. (b) The energy barriers for transitions from the state with an impurity 
in the Sk center to the state with an impurity at the Sk boundary and backward as a function of the magnetic field

The energy barriers for the transition from a state with an impurity in the Sk center to a state with an 
impurity at the boundary were found by calculating the MEP shown in Fig. 2a. An increase in the external 
field raises both the energy of the initial and transition states, but the former grows faster than the latter. 
This is why the energy barrier between the initial and final states tends to zero as B → Bc, which leads to 
the instability of the central position of the nonmagnetic defect for high fields, see Fig. 2b.

To a first approximation, a nonmagnetic impurity can be regarded as the absence of a single spin  
in an Sk. Then the stable positions of the impurity should correspond to the maximum energy density 
in the skyrmion. All contributions to the energy of the metastable Sk state are shown in Fig. 3 for two 
values   of the magnetic field below and above the critical one. It can be seen that an Sk is stabilized  
by the DM interaction, since only this contribution is negative. The impurity at the Sk boundary is, indeed, 
in the local maximum of the energy density.
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Fine energy structure of a magnetic skyrmion localized...

Fig. 3. Contributions of energy per spin in a magnetic field μB = 0.093 J (top row)  
and μB = 0.046 J (bottom row), the columns correspond to the different contributions of energy.  

The position of the impurity is shown with a white dot

When the magnetic field decreases below the critical value Bc, the density of the DM interaction 
energy increases in the Sk center. Then the second local maximum of total energy density appears near 
the defect (Fig. 3, lower row) and the removal of the magnetic site from the Sk center gives a maximal 
local energy reduction. 

Conclusions
Calculation of the energy Sk localized at a nonmagnetic defect showed the presence of two local 

energy minima below the threshold magnetic field Bc. They correspond to the location of the defect  
at the border and in the very center of the Sk. The energies of these Sk configurations depend on the 
magnitude of the magnetic field. Therefore, one can expect resonant energy absorption caused by the 
interaction with current or spin waves in such systems.
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