Rotating black holes as sources of high energy particles

Authors

DOI:

https://doi.org/10.33910/2687-153X-2020-1-1-40-49

Keywords:

rotating black hole, Kerr metric, ergosphere, particle collisions

Abstract

Ultrahigh energy particles in cosmic rays observed on the Earth can have their origin in the ergosphere of rotating black holes. This paper discusses production of these particles through decay of superheavy dark matter particles, such as multiparticle scattering near horizon, as well as a collision of particles with a large angular momentum and particles on white hole geodesics.

References

Aab, A., Abreu, P., Aglietta M. et al. (2017) Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8×1018 eV. Science, 357 (6357), 1266–1270. DOI: 10.1126/science.aan4338 (In English)

Bañados, M., Hassanain, B., Silk, J., West, S. M. (2011) Emergent flux from particle collisions near a Kerr black hole. Physical Review D, 83 (2), 023004. DOI: 10.1103/PhysRevD.83.023004 (In English)

Bañados, M., Silk, J., West, S. M. (2009) Kerr black holes as particle accelerators to arbitrarily high energy. Physical Review Letters, 103 (11), 111102. DOI: 10.1103/PhysRevLett.103.111102 (In English)

Baushev, A. (2009) Dark matter annihilation in the gravitational field of a black hole. International Journal of Modern Physics D, 18 (08), 1195–1203. DOI: 10.1142/S0218271809014509 (In English)

Berti, E., Cardoso, V., Gualtieri, L. et al. (2009) Comment on “Kerr black holes as particle accelerators to arbitrarily high energy”. Physical Review Letters, 103 (23), 239001. DOI: 10.1103/PhysRevLett.103.239001 (In English)

Boyer, R. H., Lindquist, R. W. (1967) Maximal analytic extension of the Kerr metric. Journal of Mathematical Physics, 8 (2), 265–281. DOI: 10.1063/1.1705193 (In English)

Chandrasekhar, S. (1983) The mathematical theory of black holes. Oxford: Clarendon Press, 646 p. (In English)

Frolov, V. P., Novikov, I. D. (2012) Black hole physics: Basic concepts and new developments. S. l.: Springer Science & Business Media, 770 p. DOI: 10.1007/978-94-011-5139-9 (In English)

Grib, A. A., Mamayev, S. G., Mostepanenko, V. M. (1994) Vacuum quantum effects in strong fields. Saint Petersburg: Friedmann Laboratory Publ., 361 p. (In English)

Grib, A. A., Pavlov, Y. V. (2002a) Cold dark matter and primordial superheavy particles. International Journal of Modern Physics A, 17 (29), 4435–4439. DOI: 10.1142/S0217751X02013514 (In English)

Grib, A. A., Pavlov, Yu. V. (2002b) Superheavy particles in Friedmann cosmology and the dark matter problem. International Journal of Modern Physics D, 11 (03), 433–436. DOI: 10.1142/S0218271802001706 (In English)

Grib, A. A., Pavlov, Yu. V. (2008a) Do active galactic nuclei convert dark matter into visible particles? Modern Physics Letters A, 23 (16), 1151–1159. DOI: 10.1142/S0217732308027072 (In English)

Grib, A. A., Pavlov, Yu. V. (2008b) Is dark matter the relic of the primordial matter that created the visible matter of the universe? Gravitation and Cosmology, 14 (1), 1–7. DOI: 10.1134/S0202289308010015 (In English)

Grib, A. A., Pavlov, Yu. V. (2009) Active galactic nuclei and transformation of dark matter into visible matter. Gravitation and Cosmology, 15 (1), 44–48. DOI: 10.1134/S0202289309010125 (In English)

Grib, A. A., Pavlov, Yu. V. (2010) On the collisions between particles in the vicinity of rotating black holes. JETP Letters, 92 (3), 125–129. DOI: 10.1134/S0021364010150014 (In English)

Grib, A. A., Pavlov, Yu. V. (2011) On particle collisions in the gravitational field of the Kerr black hole. Astroparticle Physics, 34 (7), 581–586. DOI: 10.1016/j.astropartphys.2010.12.005 (In English)

Grib, A. A., Pavlov, Yu. V. (2013a) On the energy of particle collisions in the ergosphere of the rotating black holes. EPL (Europhysics Letters), 101 (2), 20004. DOI: 10.1209/0295-5075/101/20004 (In English)

Grib, A. A., Pavlov, Yu. V. (2013b) Collision energy of particles in the ergosphere of rotating black holes. Theoretical and Mathematical Physics, 176 (1), 881–887. DOI: 10.1007/s11232-013-0075-4 (In English)

Grib, A. A., Pavlov, Yu. V. (2015a) Are black holes totally black? Gravitation and Cosmology, 21 (1), 13–18. DOI: 10.1134/S0202289315010065 (In English)

Grib, A. A., Pavlov, Yu. V. (2015b) High energy physics in the vicinity of rotating black holes. Theoretical and Mathematical Physics, 185 (1), 1425–1432. DOI: 10.1007/s11232-015-0351-6 (In English)

Grib, A. A., Pavlov, Yu. V. (2017) Black holes and particles with zero or negative energy. Theoretical and Mathematical Physics, 190 (2), 268–278. DOI: 10.1134/S0040577917020088 (In English)

Grib, A. A., Pavlov, Yu. V., Piattella, O. F. (2012) On collisions with unlimited energies in the vicinity of Kerr and Schwarzschild black hole horizons. Gravitation and Cosmology, 18 (1), 70–75. DOI: 10.1134/S0202289312010094 (In English)

Harada, T., Kimura, M. (2011) Collision of two general geodesic particles around a Kerr black hole. Physical Review D, 83 (8), 084041. DOI: 10.1103/PhysRevD.83.084041 (In English)

Jacobson, T., Sotiriou, T. P. (2010) Spinning black holes as particle accelerators. Physical Review Letters, 104 (2), 021101. DOI: 10.1103/PhysRevLett.104.021101 (In English)

Kerr, R. P. (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters, 11 (5), 237. DOI: 10.1103/PhysRevLett.11.237 (In English)

Misner, C. W., Thorne, K. S., Wheeler J. A. (1973) Gravitation. San Francisco: W. H. Freeman & Company, XXVI, [2], 1279 p. (In English)

Piran, T., Shaham, J., Katz, J. (1975) High efficiency of the Penrose mechanism for particle collisions. Astrophysical Journal Letters, 196, L107. DOI: 10.1086/181755 (In English)

Thorne, K. S. (1974) Disk-accretion onto a black hole. II. Evolution of the hole. Astrophysical Journal, 191, 507–520. DOI: 10.1086/152991 (In English)

Zaslavskii, O. B. (2013) Acceleration of particles as a universal property of ergosphere. Modern Physics Letters A, 28 (11), 1350037. DOI: 10.1142/S0217732313500375 (In English)

Published

2020-03-27

Issue

Section

Theoretical Physics