Прямой синтез Mg2NiH4 из MgH2 И Ni

Авторы

DOI:

https://doi.org/10.33910/2687-153X-2023-4-3-94-102

Ключевые слова:

гидриды металлов, материалы для хранения водорода, твердотельный прямой синтез, тройной гидрид Mg2NiH4, интерметаллид MgNi2

Аннотация

Показано, что экспозиция прессованной смеси порошков MgH2 и Ni в атмосфере водорода при 450 °C приводит к прямому синтезу гидрида Mg2NiH4. Предварительный помол в шаровой мельнице не проводился. Реакция велась при давлении водорода, превышающем равновесное над MgH2 и Mg2NiH4. Неизменность давления в ходе синтеза свидетельствует об отсутствии стадии разложения гидрида магния и стабильности синтезированного гидрида. Количество Mg2NiH4 определялось методами XRD и TDS. SEM с микроанализом EDX использовались для изучения морфологии продуктов реакции. Исследовано влияние времени экспозиции и температуры синтеза на эффективность реакции.

Библиографические ссылки

Akiyama, T., Isogai, H., Yagi, J. (1997) Hydriding combustion synthesis for the production of hydrogen storage alloy. Journal of Alloys and Compounds, 252 (1–2), L1–L4. https://doi.org/10.1016/S0925-8388(96)02674-6 (In English)

Akiyama, T., Isogai, H., Yagi, J. (1998) Reaction rate of combustion synthesis of an intermetallic compound. Powder Technology, 95 (2), 175–181. https://doi.org/10.1016/S0032-5910(97)03345-7 (In English)

Baraban, A. P., Chernov, I. A., Dmitriev, V. A. et al. (2022) The Mg2NiH4 film on nickel substrate: Synthesis, properties and kinetics of formation. Thin Solid Films, 762, article 139556. https://doi.org/10.1016/j.tsf.2022.139556 (In English)

Blomqvist, H., Noréus, D. (2002) Mechanically reversible conductor–insulator transition in Mg2NiH4. Journal of Applied Physics, 91 (8), 5141–5148. https://doi.org/10.1063/1.1461069 (In English)

Blomqvist, H., Rönnebro, E., Noréus, D., Kuji, T. (2002) Competing stabilisation mechanisms in Mg2NiH4. Journal of Alloys and Compounds, 330–332, 268–270. https://doi.org/10.1016/S0925-8388(01)01637-1 (In English)

Elets, D., Chernov, I., Voyt, A. et al. (2017) Influence of uniaxial pressing and nickel catalytic additive on activation of magnesium hydride thermal decomposition. International Journal of Hydrogen Energy, 42 (39), 24877–24884. https://doi.org/10.1016/j.ijhydene.2017.08.076 (In English)

Evard, E., Gabis, I., Yartys, V. (2010) Kinetics of hydrogen evolution from MgH2: Experimental studies, mechanism and modeling. International Journal of Hydrogen Energy, 35 (17), 9060–9069. https://doi.org/10.1016/j.ijhydene.2010.05.092 (In English)

Humphries, T. D., Sheppard, D. A., Buckley, C. E. (2017) Recent advances in the 18-electron complex transition metal hydrides of Ni, Fe, Co and Ru. Coordination Chemistry Reviews, 342, 19–33. https://doi.org/10.1016/j.ccr.2017.04.001 (In English)

Kataoka, R., Goto, Y., Kamegawa, A. et al. (2007) High-pressure synthesis of novel hydride in Mg–Ni–H and Mg–Ni–Cu–H systems. Journal of Alloys and Compounds, 446–447, 142–146. https://doi.org/10.1016/j.jallcom.2007.04.221 (In English)

Leng, H., Pan, Y., Li, Q., Chou, K-C. (2014) Effect of LiH on hydrogen storage property of MgH2. International Journal of Hydrogen Energy, 39 (25), 13622–13627. https://doi.org/10.1016/j.ijhydene.2014.02.131 (In English)

Li, L., Akiyama, T., Yagi, J. (1999) Reaction mechanism of hydriding combustion synthesis of Mg2NiH4. Intermetallics, 7 (6), 671–677. https://doi.org/10.1016/S0966-9795(98)00082-X (In English)

Li, L., Akiyama, T., Yagi, J. (2001) Activation behaviors of Mg2NiH4 at different hydrogen pressures in hydriding combustion synthesis. International Journal of Hydrogen Energy, 26 (10), 1035–1040. https://doi.org/10.1016/S0360-3199(01)00042-8 (In English)

Li, L., Saita, I, Akiyama, T. (2004) Intermediate products during the hydriding combustion synthesis of Mg2NiH4. Journal of Alloys and Compounds, 384 (1-2), 157–164. https://doi.org/10.1016/j.jallcom.2004.04.092 (In English)

Li, L., Saita, I, Akiyama, T. (2005) Intermediate products of hydriding combustion synthesis of Mg2NiH4 studied by optical microscopy and field-emission scanning electron microscopy. Intermetallics, 13 (6), 662–668. https://doi.org/10.1016/j.intermet.2004.10.006 (In English)

Martinez-Coronado, R., Retuerto, M., Alonso, J. A. (2012) Simplified mechano-synthesis procedure of Mg2NiH4. International Journal of Hydrogen Energy, 37 (5), 4188–4193. https://doi.org/10.1016/j.ijhydene.2011.11.129 (In English)

Martınez-Coronado, R., Retuerto, M., Torres, B. et al. (2013) High-pressure synthesis, crystal structure and cyclability of the Mg2NiH4 hydride. International Journal of Hydrogen Energy, 38 (14), 5738–5745. https://doi.org/10.1016/j.ijhydene.2013.02.108 (In English)

Mulas, G., Delogu, F., Pistidda, C., Cocco, G. (2008) Mechanochemical effects on hydrogen absorption in Mg2Ni alloys under mechanical processing conditions. Journal of Materials Science, 43 (15), 5193–5198. https://doi.org/10.1007/s10853-008-2719-6 (In English)

Orimo, S., Fujii, H., Ikeda, K. (1997) Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding. Acta Materialia, 45 (1), 331–341. https://doi.org/10.1016/S1359-6454(96)00158-9 (In English)

Polanski, M., Nielsen, T., Kunce, I. et al. (2013) Mg2NiH4 synthesis and decomposition reactions. International Journal of Hydrogen Energy, 38 (10), 4003–4010. https://doi.org/10.1016/j.ijhydene.2013.01.119 (In English)

Reilly, J. J., Wiswall, R. H. (1968) Reaction hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorganic Chemistry, 7 (11), 2254–2256. https://doi.org/10.1021/ic50069a016 (In English)

Revesz, A., Gajdics, M., Schafler, E et al. (2017) Dehydrogenation-hydrogenation characteristics of nanocrystalline Mg2Ni powders compacted by high-pressure torsion. Journal of Alloys and Compounds, 702, 84–91. https://doi.org/10.1016/j.jallcom.2017.01.261 (In English)

Saita, I., Li, L., Saito, K., Akiyama, T. (2003) Hydriding combustion synthesis of Mg2NiH4. Journal of Alloys and Compounds, 356–357, 490–493. https://doi.org/10.1016/S0925-8388(03)00230-5 (In English)

Takamura, H., Kakuta, H., Kamegawa, A., Okada, M. (2002) Crystal structure of novel hydrides in a Mg–Ni–H system prepared under an ultra high pressure. Journal of Alloys and Compounds, 330–332, 157–161. https://doi.org/10.1016/S0925-8388(01)01577-8 (In English)

Загрузки

Опубликован

2023-09-07

Выпуск

Раздел

Condensed Matter Physics