Особенности структуры и оптических свойств аморфных полупроводниковых плазмонных нанокомпозитов TiO2<Ag>, полученных методом ионно-плазменного со-распыления

Авторы

DOI:

https://doi.org/10.33910/2687-153X-2023-4-4-195-202

Ключевые слова:

ионно-плазменное распыление, аморфные плазмонные полупроводниковые нанокомпозиты TiO2<Ag>, наночастицы серебра, структура, оптические свойства, поверхностное плазмонное резонансное поглощение

Аннотация

Исследованы структура и оптические свойства аморфных полупроводниковых нанокомпозитных пленок TiO2<Ag>, полученных ионно-плазменным ВЧ-магнетронным совместным распылением мишени из TiO2 и Ag только в атмосфере аргона. Матрица пленок TiO2<Ag> аморфная с включениями изолированных наночастиц серебра размером 3–4 нм. Спектры оптического пропускания имеют резкий край основной полосы поглощения в области ~ 300 нм, образованный прямыми и непрямыми разрешенными оптическими переходами. Ширина запрещенной зоны пленок TiO2<Ag> увеличивается с увеличением концентрации Ag из-за некоторого упорядочения матрицы. Полоса поглощения наблюдается в видимой области спектра из-за эффекта локального поверхностно-плазмонного резонансного поглощения (ЛППР) на наночастицах серебра. Интенсивность ЛППР увеличивается с концентрацией серебра, а максимум полосы поглощения в зависимости от концентрации Ag находится в области от 455 до 488 нм.

Библиографические ссылки

Akshay, V. R., Arun, B., Mandal, G. et al. (2019) Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol-gel method. Physical Chemistry Chemical Physics, 21 (24), 12991–13004. https://doi.org/10.1039/c9cp01351b (In English)

Banerjee, S., Dionysiou, D. D., Pillai, S. C. (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental, 176–177, 396–428. https://doi.org/10.1016/j.apcatb.2015.03.058 (In English)

Bueno-Alejo, C. J., Arca-Ramos, A., Hueso, J. L. (2017) Plasmonics devoted to photocatalytic applications in liquid, gas, and biological environments. In: G. Barbillon (ed.). Nanoplasmonics—Fundamentals and Applications. [S. l.]: InTech Publ. [Online]. Available at: https://doi.org/10.5772/intechopen.68812 (15.05.2023). (In English)

Cao, C., Yan, J., Zhang, Y., Zhao, L. (2016) Stability of titania nanotube arrays in aqueous environment and the related factors. Scientific Reports, 6 (1), article 23065. https://doi.org/10.1038/srep23065 (In English)

Ghann, W., Rahman, A., Rahman, A., Uddin, J. (2016) Interaction of sensitizing dyes with nanostructured TiO2 film in dye-sensitized solar cells using terahertz spectroscopy. Scientific Reports, 6 (1), article 30140. https://doi.org/10.1038/srep30140 (In English)

Ghidelli, M., Mascaretti, L., Bricchi, B. R. et al. (2020) Light management in TiO2 thin films integrated with Au plasmonic nanoparticles. Semiconductor Science and Technology, 35 (3), article 035016. https://doi.org/10.1088/1361-6641/ab6cea (In English)

Gibson, U. J., Craighead, H. G., Buhrman, R. A. (1982) Topological considerations in the optical properties of granular composite films. Physical Review B, 25 (2), 1449–1452. https://doi.org/10.1103/physrevb.25.1449 (In English)

Ievlev, V. M., Kushchev, S. B., Latyshev, A. N., Leonova, L. Yu. (2014) Absorption spectra of TiO2 thin films synthesized by the reactive radio-frequency magnetron sputtering of titanium. Semiconductors, 48 (7), 848–858. https://doi.org/10.1134/S1063782614070094 (In English)

Klinger, M., Jager, A. (2015) Crystallographic Tool Box (CrysTBox): Automated tools for transmission electron microscopists and crystallographers. Journal of Applied Crystallography, 48, 2012–2018. https://doi.org/10.1107/S1600576715017252 (In English)

Kulkarni, M., Mazare, A., Gongadze, E. et al. (2015) Titanium nanostructures for biomedical applications. Nanotechnology, 26 (6), article 062002. https://doi.org/10.1088/0957-4484/26/6/062002 (In English)

Manikandan, D., Mohan, S., Nair, K. G. M. (2003) Absorption and luminescence of silver nanocomposite soda-lime glass formed by Ag+-Na+ ion-exchange. Materials Research Bulletin, 38 (9–10), 1545–1550. https://doi.org/10.1016/S0025-5408(03)00165-X (In English)

Navabpour, P., Ostovarpour, S., Hampshire, J. et al. (2014) The effect of process parameters on the structure, photocatalytic and self-cleaning properties of TiO2 and Ag-TiO2 coatings deposited using reactive magnetron sputtering. Thin Solid Films, 571-1, 75–83. https://doi.org/10.1016/j.tsf.2014.10.040 (In English)

Ozimek, M., Palewicz, M., Hreniak, A. (2016) Optical properties of TiO2 nanopowder doped by silver (copper) during synthesis or PVD method. Acta Physica Polonica A, 129 (6), 1214–1219. https://doi.org/10.12693/APhysPolA.129.1214 (In English)

Pakdel, E., Daoud, W. A., Wang, X. (2013) Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite. Applied Surface Science, 275, 397–402. https://doi.org/10.1016/j.apsusc.2012.10.141 (In English)

Pan, H., Heagy, M. D. (2019) Plasmon-enhanced photocatalysis: Ag/TiO2 nanocomposite for the photochemical reduction of bicarbonate to formic acid. MRS Advances, 4 (7), 425–433. https://doi.org/10.1557/adv.2018.677 (In English)

Peshaya, S. L., Prikhodko, O. Yu., Mukhametkarimov, Ye. S. et al. (2022) Osobennosti opredeleniya opticheskoj shiriny zapreshchennoj zony amorfnykh nanorazmernykh kompozitnykh plenok TiO2:Ag [Peculiarities of determining the optical band gap of amorphous nanosized TiO2:Ag composite films]. Opticheskij zhurnal — Journal of Optical Technology, 89 (1), 74–81. (In Russian)

Prakash, J., Kumar, P., Harris, R. A. et al. (2016) Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites. Nanotechnology, 27 (35), article 355707. https://doi.org/10.1088/0957-4484/27/35/355707 (In English)

Prikhodko, O., Manabayev, N., Guseinov, N. (2014) Plasmon resonance in a-C:H films modified with platinum nanoclusters. Journal of Nano- and Electronic Physics, 6 (3), article 03067. (In English)

Prikhodko, O. Yu., Mikhailova, S. L., Mukhametkarimov, E. C. et al. (2016) Optical properties of a-C:H thin films modified by Ti and Ag. Proceedings of SPIE, 9929, article 99291G. https://doi.org/10.1117/12.2238455 (In English)

Prikhodko, O. Yu., Mikhailova, S. L., Mukhametkarimov, Ye. S. et al. (2017) Structure and phase composition of thin a-C:H films modified by Ag and Ti. Optics and Spectroscopy, 123 (3), 383–387. https://doi.org/10.1134/S0030400X17090260 (In English)

Rodrigues, M. S., Costa, D., Domingues, R. P. et al. (2018) Optimization of nanocomposite Au/TiO2 thin films towards LSPR optical-sensing. Applied Surface Science, 438, 74–83. https://doi.org/10.1016/j.apsusc.2017.09.162 (In English)

Tauc, J., Grigorovici, R., Vancu, A. (1966) Optical Properties and electronic structure of Ge optical properties and electronic structure of amorphous germanium. Physica Status Solidi b, 15 (2), 627–637. https://doi.org/10.1002/pssb.19660150224 (In English)

Torrell, M., Kabir, R., Cunha, L. et al. (2011) Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing. Journal of Applied Physics, 109 (7), article 074310. https://doi.org/10.1063/1.3565066 (In English)

Urbach, F. (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorytion of solids. Physical Review, 92 (5), 1324–1324. https://doi.org/10.1103/PhysRev.92.1324 (In English)

Usha, K., Kumbhakar, P., Mondal, B. (2016) Effect of Ag-doped TiO2 thin film passive layers on the performance of photo-anodes for dye-sensitized solar cells. Materials Science in Semiconductor Processing, 43, 17–24. https://doi.org/10.1016/j.mssp.2015.11.015 (In English)

Wodka, D., Bielaniska, E., Socha, R. P. et al. (2010) Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Applied Materials and Interfaces, 2 (7), 1945–1953. https://doi.org/10.1021/am1002684 (In English)

Yu, Y., Wen, W., Qian, X.-Y. et al. (2017) UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations. Scientific Reports, 7 (1), article 41253. https://doi.org/10.1038/srep41253 (In English)

Yuan, X., Xu, W., Huang, F. et al. (2017) Structural colors of fabric from Ag/TiO2 composite films prepared by magnetron sputtering deposition. International Journal of Clothing Science and Technology, 29 (3), 427–435. https://doi.org/10.1108/IJCST-04-2016-0038 (In English)

Zada, I., Zhang, W., Zheng, W. et al. (2017) The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings. Scientific Reports, 7 (1), article 17277. https://doi.org/10.1038/s41598-017-17479-8 (In English)

Zhang, J., Li, M., Feng, Z. et al. (2006) UV Raman spectroscopic study on TiO2-I. phase transformation at the surface and in the bulk. Journal of Physical Chemistry B, 110 (2), 927–935. https://doi.org/10.1021/jp0552473 (In English)

Zhao, G., Kozuka, H., Yoko, T. (1996) Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films, 277 (1–2), 147–154. https://doi.org/10.1016/0040-6090(95)08006-6 (In English)

Опубликован

2023-12-08

Выпуск

Раздел

Physics of Semiconductors