Влияет ли первичный волос на формирование голой сингулярности в метрике Вайдья?
DOI:
https://doi.org/10.33910/2687-153X-2024-5-2-83-90Ключевые слова:
черная дыра, голая сингулярность, гравитационный коллапс, гравитационное расщепление, сила сингулярностиАннотация
В статье рассматривается гравитационный коллапс в метрике Вайдья, полученной с помощью гравитационного расщепления. Мы исследуем вопрос о том, влияет ли первичный волос на конечный результат гравитационного коллапса. Мы доказали, что константа связи оказывает влияние на формирование голой сингулярности. Мы также исследовали вопрос о силе центральной сингулярности и доказали, что она является гравитационно-сильной. Тем не менее приведенная модель не нарушает космический принцип цензуры, поскольку при формировании голой сингулярности нарушаются слабые энергетические условия.
Библиографические ссылки
Acquaviva, G., Goswami, R., Hamid, A. I. M., Maharaj, S. D. (2015) Thermodynamics of gravity favours Weak Censorship Conjecture. arXiv, 1508, article 00440. https://doi.org/10.48550/arXiv.1508.00440 (In English)
Babichev, E., Charmousis, C. (2014) Dressing a black hole with a time-dependent Galileon. Journal of High Energy Physics, 2014, article 106. https://doi.org/10.1007/JHEP08(2014)106 (In English)
Babichev, E., Dokuchaev, V., Eroshenko, Yu. (2012) Backreaction of accreting matter onto a black hole in the Eddington-Finkelstein coordinates. Classical and Quantum Gravity, 29, article 115002. https://doi.org/10.1088/0264-9381/29/11/115002 (In English)
Clarke, C. J. S., Krolak, A. (1985) Conditions for the occurence of strong curvature singularities. Journal of Geometry and Physics, 2 (2), 127–143. https://doi.org/10.1016/0393-0440(85)90012-9 (In English)
Contreras, E., Ovalle, J., Casadio, R. (2021) Gravitational decoupling for axially symmetric systems and rotating black holes. Physical Review D, 103 (4), article 044020. https://doi.org/10.1103/PhysRevD.103.044020 (In English)
Denardo, G., Ruffini, R. (1973) On the energetics of Reissner Nordstrom geometries. Physical Letters B, 45 (3), 259–262. https://doi.org/10.1016/0370-2693(73)90198-6 (In English)
Dey, D., Joshi, P. S. (2019) Gravitational collapse of baryonic and dark matter. Arabian Journal of Mathematics, 8 (1), 269–292. https://doi.org/10.1007/s40065-019-0252-x (In English)
Dey, D., Mosani, K., Joshi, P. S., Vertogradov, V. (2022) Causal structure of singularity in non-spherical gravitational collapse. The European Physical Journal C, 82 (5), article 431. https://doi.org/10.1140/epjc/s10052-022-10401-1 (In English)
Dwivedi, I. H., Joshi, P. S. (1989) On the nature of naked singularities in Vaidya spacetimes. Classical and Quantum Gravity, 6 (11), article 1599. https://doi.org/10.1088/0264-9381/6/11/013 (In English)
Goncalves, S. M. C. V., Jhingan, S. (2001) Singularities in gravitational collapse with radial pressure. General Relativity and Gravitation, 33, 2125–2149. https://doi.org/10.1023/A:1015285531320 (In English)
Harko, T. (2003) Gravitational collapse of a Hagedorn fluid in Vaidya geometry. Physical Review D, 68 (6), article 064005. https://doi.org/10.1103/PhysRevD.68.064005 (In English)
Hawking, S. W. (1975) Particle creation by black holes. Communications in Mathematical Physics, 43, 199–220. https://doi.org/10.1007/BF02345020 (In English)
Hawking, S. W., Perry, M. J., Strominger, A. (2016) Soft hair on black holes. Physical Review Letters, 116(23), article 231301. https://doi.org/10.1103/PhysRevLett.116.231301 (In English)
Heydarzade, Y., Darabi, F. (2018a) Surrounded Bonnor–Vaidya solution by cosmological fields. European Physical Journal C, 78 (12), article 1004. https://doi.org/10.1140/epjc/s10052-018-6041-4 (In English)
Heydarzade, Y., Darabi, F. (2018b) Surrounded Vaidya black holes: Apparent horizon properties. The European Physical Journal C, 78 (4), article 342. https://doi.org/10.1140/epjc/s10052-018-5842-9 (In English)
Heydarzade, Y., Darabi, F. (2018c) Surrounded Vaidya solution by cosmological fields. The European Physical Journal C, 78 (7), article 582. https://doi.org/10.1140/epjc/s10052-018-6041-4 (In English)
Heydarzade, Y., Misyura, M., Vertogradov, V. (2023) Hairy Kiselev black hole solutions. Physical Review D, 108 (4), article 044073. https://doi.org/10.1103/PhysRevD.108.044073 (In English)
Heydarzade, Y., Vertogradov, V. (2023) The influence of the charge on a dynamical photon sphere. arXiv, 2311, article 08930. https://doi.org/10.48550/arXiv.2311.08930 (In English)
Jhingan, S., Joshi, P. S., Singh, T. P. (1996) The final fate of spherical inhomogeneous dust collapse II: Initial data and causal structure of singularity. Classical and Quantum Gravity, 13 (11), 3057–3067. https://doi.org/10.1088/0264-9381/13/11/019 (In English)
Joshi, P. S. (2007) Gravitational collapse and spacetime singularities. Cambridge: Cambridge University Press, 273 p. https://doi.org/10.1017/CBO9780511536274 (In English)
Joshi, P. S., Malafarina, D. (2011) Recent development in gravitational collapse and spacetime singularitits. International Journal of Modern Physics D, 20 (14), 2641–2729. https://doi.org/10.1142/S0218271811020792 (In English)
Koga, Y., Asaka, N., Kimura, M., Okabayashi, K. (2022) Dynamical photon sphere and time evolving shadow around black holes with temporal accretion. Physical Review D, 105 (10), article 104040. https://doi.org/10.1103/PhysRevD.105.104040 (In English)
Mahapatra, S., Banerjee, I. (2023) Rotating hairy black holes and thermodynamics from gravitational decoupling. Physics of the Dark Universe, 39, article 101172. https://doi.org/10.1016/j.dark.2023.101172 (In English)
Mkenyeleye, M. D., Goswami, R., Maharaj, S. D. (2014) Gravitational collapse of generalized Vaidya spacetime. Physical Review D, 90 (6), article 064034. https://doi.org/10.1103/PhysRevD.90.064034 (In English)
Mosani, K., Dey, D., Joshi, P. S. (2022) Global visibility of a strong curvature singularity in non-marginally bound dust collapse. Physical Review D, 102 (4), article 044037. https://doi.org/10.1103/PhysRevD.102.044037 (In English)
Naidu, N. F., Bogadi, R. S., Kaisavelu, A., Govender, M. (2020) Stability and horizon formation during dissipative collapse. General Relativity and Gravitation, 52 (8), article 79. https://doi.org/10.1007/s10714-020-02728-5 (In English)
Nielsen, A. B. (2014) Revisiting Vaidya horizons. Galaxies, 2 (1), 62–71 https://doi.org/10.3390/galaxies2010062 (In English)
Nielsen, A. B., Yoon, J. H. (2008) Dynamical surface gravity. Classical and Quantum Gravity, 25 (8), article 085010. https://doi.org/10.1088/0264-9381/25/8/085010 (In English)
Nolan, B. C. (1999) Strengths of singularities in spherical symmetry. Physical Review D, 60 (2), article 024014. https://doi.org/10.1103/PhysRevD.60.024014 (In English)
Oppenheimer, J. R., Snyder, H. (1939) On continued gravitational contraction. Physical Review, 56 (5), 455–459. https://doi.org/10.1103/PhysRev.56.455 (In English)
Ori, A. (1991) Charged null fluid and the weak energy condition. Classical and Quantum Gravity, 8 (8), 1559–1575. https://doi.org/10.1088/0264-9381/8/8/019 (In English)
Ovalle, J. (2017) Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids. Physical Review D, 95 (10), article 104019. https://doi.org/10.1103/PhysRevD.95.104019 (In English)
Ovalle, J. (2019) Decoupling gravitational sources in general relativity: The extended case. Physics Letters B, 788, 213–218. https://doi.org/10.1016/j.physletb.2018.11.029 (In English)
Ovalle, J., Casadio, R., Contreras, E., Sotomayor, A. (2021) Hairy black holes by gravitational decoupling. Physics of the Dark Universe 31, article 100744. https://doi.org/10.1016/j.dark.2020.100744 (In English)
Ovalle, J., Casadio, R., Rocha, R. D. et al. (2018) Black holes by gravitational decoupling. European Physical Journal C, 78 (11), article 960. https://doi.org/10.1140/epjc/s10052-018-6450-4 (In English)
Papapetrou, A. (1985) A Random Walk in Relativity and Cosmology. New York: John Wiley & Sons Publ., 184 p. (In English)
Penrose, R., Floyd, R. M. (1971) Extraction of rotational energy from a black hole. Nature Physical Science, 229 (6), 177–179. https://doi.org/10.1038/physci229177a0 (In English)
Ray, S., Panda, A., Majumder, B. et al. (2022) Collapsing scenario for the k-essence emergent generalised Vaidya spacetime in the context of massive gravity’s rainbow. Chinese Physics C, 46 (12), article 125103. https://doi.org/10.1088/1674-1137/ac8868 (In English)
Ruffini, R., Wheeler, J. A. (1971) Introducing the black hole. Physics Today, 24 (1), 30–41. https://doi.org/10.1063/1.3022513 (In English)
Santos, N. O. (1985) Non-adiabatic radiating collapse. Monthly Noices of the Royal Astronomical Society, 216 (2), 403–410. https://doi.org/10.1093/mnras/216.2.403 (In English)
Singh, T. P., Joshi, P. S. (1996) The final fate of spherical inhomogeneous dust collapse. Classical and Quantum Gravity, 13 (3), 559–571. https://doi.org/10.1088/0264-9381/13/3/019 (In English)
Solanki, J., Perlick, V. (2022) Photon sphere and shadow of a time-dependent black hole described by a Vaidya metric. Physical Review D, 105 (6), article 064056. https://doi.org/10.1103/PhysRevD.105.064056 (In English)
Sotiriou, T. P., Faraoni, V. (2012) Black holes in scalar-tensor gravity. Physical Review Letters, 108 (8), article 081103. https://doi.org/10.1103/PhysRevLett.108.081103 (In English)
Tipler, F. J. (1977) Singularities in conformally flat spacetimes. Physics Letters A, 64 (1), 8–10. https://doi.org/10.1016/0375-9601(77)90508-4 (In English)
Vaidya, P. C. (1951) Nonstatic solutions of Einstein’s field equations for spheres of fluids radiating energy. Physical Review, 83 (1), article 10. https://doi.org/10.1103/PhysRev.83.10 (In English)
Vertogradov, V. (2016) Naked singularity formation in generalized Vaidya space-time. Gravitation and Cosmology, 22 (2), 220–223. https://doi.org/10.1134/S020228931602016X (In English)
Vertogradov, V. (2018) The eternal naked singularity formation in the case of gravitational collapse of generalized Vaidya space-time. International Journal of Modern Physics A, 33 (17), article 1850102. https://doi.org/10.1142/S0217751X18501026 (In English)
Vertogradov, V. (2020) The negative energy in generalized Vaidya spacetime. Universe, 6 (9), article 155. https://doi.org/10.3390/universe6090155 (In English)
Vertogradov, V. (2022a) Non-linearity of Vaidya spacetime and forces in the central naked singularity. Physics of Complex Systems, 3 (2), 81–85. https://www.doi.org/10.33910/2687-153X-2022-3-2-81-85 (In English)
Vertogradov, V. (2023) Extraction energy from charged Vaidya black hole via the Penrose process. Communications in Theoretical Physics, 75 (4), article 045404. https://doi.org/10.1088/1572-9494/acc018 (In English)
Vertogradov, V., Kudryavcev, D. (2023) Generalized vaidya spacetime: horizons, conformal symmetries, surfacegravity and diagonalization. Modern Physics Letters A, 38 (24n25), article 2350119. https://doi.org/10.1142/S0217732323501195 (In English)
Vertogradov, V., Misyura, M. (2022) Vaidya and generalized Vaidya solutions by gravitational decoupling. Universe, 8 (11), article 567. https://doi.org/10.3390/universe8110567 (In English)
Vertogradov, V., Misyura, M. (2023) The regular black hole by gravitational decoupling. Physical Sciences Forum, 7 (1), article 27. https://doi.org/10.3390/ECU2023-14058 (In English)
Wang, A., Wu, Yu. (1999) Generalized Vaidya solutions. General Relativity and Gravitation, 31 (1), 107–114. https://doi.org/10.1023/A:1018819521971 (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Виталий Дмитриевич Вертоградов
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.