Молекулярная структура и динамика водно-этанольного раствора додецилсульфата натрия
DOI:
https://doi.org/10.33910/2687-153X-2024-5-2-49-59Ключевые слова:
поверхностно-активное вещество, ДСН, структурообразование, сольватация, мицеллы, бинарные растворы вода–этанолАннотация
Изучены процессы диэлектрической релаксации растворов додецилсульфата натрия (ДСН) в диапазоне концентраций в бинарном водно-этанольном растворителе при различных концентрациях спирта. Показано, что этанол в концентрациях ниже 40% не препятствует мицеллообразованию ДСН, а при более высоком содержании этанола мицеллы ПАВ не образуются. Тем не менее данные ЯМР показывают наличие в растворах с высокой концентрацией спирта малых ассоциатов, скорее всего димеров ДСН, свойства и подвижность которых зависят от состава водно-этанольной среды. Обсуждены трансформации структуры и размеров комплексов при изменении содержания этанола в растворе.
Библиографические ссылки
Arkhipov, V. P., Idiyatullin, Z. Sh. (2012) Raspredelenie molekul etanola mezhdu mitsellyarnoj i vodnoj fazami v vodno-etanol’nykh rastvorakh dodetsilsul’fata natriya [Distribution of ethanol molecules between the micellar and aqueous phases in aqueous-ethanol solutions of sodium dodecilsulphate]. Vestnik tekhnologicheskogo universiteta — Bulletin of the Technological University, 15 (9), 11–14. (In Russian)
Asenbaum, A., Pruner, C., Wilhelm, E. et al. (2012) Structural changes in ethanol–water mixtures: Ultrasonics, Brillouin scattering and molecular dynamics studies. Vibrational Spectroscopy, 60, 102–106. https://doi.org/10.1016/j.vibspec.2011.10.015 (In English)
Axelrod, N., Axelrod, E., Gutina, A. et al. (2004) Dielectric spectroscopy data treatment: I. Frequency domain. Measurement Science and Technology, 15 (4), 755–764. https://doi.org/10.1088/0957-0233/15/4/020 (In English)
Beddard, G. S., Doust, T., Hudales, J. (1981) Structural features in ethanol–water mixtures revealed by picosecond fluorescence anisotropy. Nature, 294 (5837), 145–146. https://doi.org/10.1038/294145a0 (In English)
Brai, M., Kaatze, U. (1992) Ultrasonic and hypersonic relaxations of monohydric alcohol/water mixtures. The Journal of Physical Chemistry, 96 (22), 8946–8955. https://doi.org/10.1021/j100201a046 (In English)
Buchner, R., Baar, C., Fernandez, P. et al. (2005) Dielectric spectroscopy of micelle hydration and dynamics in aqueous ionic surfactant solutions. Journal of Molecular Liquids, 118 (1–3), 179–187. https://doi.org/10.1016/j.molliq.2004.07.035 (In English)
Dutt, G. B., Doraiswamy, S. (1992) Picosecond reorientational dynamics of polar dye probes in binary aqueous mixtures. The Journal of Chemical Physics, 96 (4), 2475–2491. https://doi.org/10.1063/1.462052 (In English)
Faizullin, D. A., Konnova, T. A., Haertle, T., Zuev, Y. F. (2017) Secondary structure and colloidal stability of betacasein in microheterogeneous water-ethanol solutions. Food Hydrocolloids, 63, 349–355. https://doi.org/10.1016/j.foodhyd.2016.09.011 (In English)
Feldman, Y., Ben Ishai, P. (2021) The Microwave response of water as the measure of interactions in a complex liquid. In: W. H. Hunter Woodward (ed.). Broadband Dielectric Spectroscopy: A Modern Analytical Technique. Washington: American Chemical Society Publ., pp. 283–300. https://doi.org/10.1021/bk-2021-1375.ch013 (In English)
Gnezdilov, O. I., Zuev, Y. F., Zueva, O. S. et al. (2011) Self-diffusion of ionic surfactants and counterions in premicellar and micellar solutions of sodium, lithium and cesium dodecyl sulfates as studied by NMR-diffusometry. Applied Magnetic Resonance, 40, 91–103. https://doi.org/10.1007/s00723-010-0185-1 (In English)
Greinacher, H. (1948) Uber eine methode zur bestimmung der dielektrizitatskonstanten von flussigkeiten [About a method for determining the dielectric constants of liquids]. Helvetica Physica Acta, 21 (3–4), 261–272. (In German)
Gubaidullin, A. T., Litvinov, I. A., Samigullina, A. I. et al. (2016) Structure and dynamics of concentrated micellar solutions of sodium dodecyl sulfate. Russian Chemical Bulletin, 65, 158–166. https://doi.org/10.1007/s11172-016-1278-2 (In English)
Halder, R., Jana, B. (2018) Unravelling the composition-dependent anomalies of pair hydrophobicity in water– ethanol binary mixtures. The Journal of Physical Chemistry B, 122 (26), 6801–6809. https://doi.org/10.1021/acs.jpcb.8b02528 (In English)
Holmberg, K., Jonsson, B., Kronberg, B., Lindman, B. (2002) Intermolecular interactions. In: Surfactants and Polymers in Aqueous Solution. 2nd ed. Chichester: John Wiley & Sons Publ., pp. 157–174. https://doi.org/10.1002/0470856424.ch7 (In English)
Hu, N., Wu, D., Cross, K. et al. (2010a) Structurability: A collective measure of the structural differences in vodkas. Journal of Agricultural and Food Chemistry, 58 (12), 7394–7401. https://doi.org/10.1021/jf100609c (In English)
Hu, N., Wu, D., Cross, K. J., Schaefer, D. W. (2010b) Structural basis of the 1 H-nuclear magnetic resonance spectra of ethanol–water solutions based on multivariate curve resolution analysis of mid-infrared spectra. Applied Spectroscopy, 64 (3), 337–342. https://doi.org/10.1366/000370210790918373 (In English)
Konnova, T. A., Faizullin, D. A., Haertle, T., Zuev, Y. F. (2013) β-casein micelle formation in water-ethanol solutions. Doklady Biochemistry and Biophysics, 448 (1), 36–39. https://doi.org/10.1134/S1607672913010092 (In English)
Levy, E., Puzenko, A., Kaatze, U. et al. (2012) Dielectric spectra broadening as the signature of dipole-matrix interaction. II. Water in ionic solutions. The Journal of Chemical Physics, 136 (11), article 114503. https://doi.org/10.1063/1.3691183 (In English)
Lewis, G. L., Smyth, C. P. (1939) The dipole moments and structures of ozone, silicobromoform and dichlorogermane. Journal of the American Chemical Society, 61 (11), 3063–3066. https://doi.org/10.1021/ja01266a026 (In English)
Mashimo, S., Umehara, T., Redlin, H. (1991) Structures of water and primary alcohol studied by microwave dielectric analyses. The Journal of Chemical Physics, 95 (9), 6257–6260. https://doi.org/10.1063/1.461546 (In English)
Mijaković, M., Kežić, B., Zoranić, L. et al. (2011) Ethanol-water mixtures: Ultrasonics, Brillouin scattering and molecular dynamics. Journal of Molecular Liquids, 164 (1–2), 66–73. https://doi.org/10.1016/j.molliq.2011.06.009 (In English)
Nishikawa, K., Iijima, T. (1993) Small-angle x-ray scattering study of fluctuations in ethanol and water mixtures. The Journal of Physical Chemistry, 97 (41), 10824–10828. https://doi.org/10.1021/j100143a049 (In English)
Powles, J. G. (1953) Dielectric relaxation and the internal field. The Journal of Chemical Physics, 21 (4), 633–637. https://doi.org/10.1063/1.1698980 (In English)
Romsted, L. S. (ed.). (2014) Surfactant science and technology: Retrospects and prospects. Boca Raton: CRC Press, 593 p. https://doi.org/10.1201/b16802 (In English)
Rosen, M. J., Kunjappu, J. T. (2012) Surfactants and interfacial phenomena. New Jersey: John Wiley & Sons Publ., 616 p. http://dx.doi.org/10.1002/9781118228920 (In English)
Sato, T., Buchner, R. (2004) Dielectric relaxation processes in ethanol/water mixtures. The Journal of Physical Chemistry A, 108 (23), 5007–5015. https://doi.org/10.1021/jp035255o (In English)
Sato, T., Chiba, A., Nozaki, R. (1999) Dynamical aspects of mixing schemes in ethanol–water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process. The Journal of Chemical Physics, 110 (5), 2508–2521. https://doi.org/10.1063/1.477956 (In English)
Soper, A. K., Dougan, L., Crain, J., Finney, J. L. (2006) Excess entropy in alcohol−water solutions: A simple clustering explanation. The Journal of Physical Chemistry B, 110 (8), 3472–3476. https://doi.org/10.1021/jp054556q (In English)
Wakisaka, A., Komatsu, S., Usui, Y. (2001) Solute-solvent and solvent-solvent interactions evaluated through clusters isolated from solutions: Preferential solvation in water-alcohol mixtures. Journal of Molecular Liquids, 90 (1–3), 175–184. https://doi.org/10.1016/S0167-7322(01)00120-9 (In English)
Wakisaka, A., Ohki, T. (2005) Phase separation of water–alcohol binary mixtures induced by the microheterogeneity. Faraday Discussions, 129, 231–245. https://doi.org/10.1039/B405391E (In English)
Zuev, Yu. F., Kurbanov, R. Kh., Idiyatullin, B. Z., Us’yarov, O. G. (2007) Sodium dodecyl sulfate self-diffusion in premicellar and low-concentrated micellar solutions in the presence of a background electrolyte. Colloid Journal, 69, 444–449. https://doi.org/10.1134/S1061933X07040059 (In English)
Zuev, Yu. F., Lunev, I. V., Turanov, A. N., Zueva, O. S. (2024) Micellization of sodium dodecyl sulfate in the vicinity of Krafft point: An NMR and dielectric spectroscopy study. Russian Chemical Bulletin, 73 (3), 529–535. https://doi.org/10.1007/s11172-024-4162-5 (In English)
Zueva, O. S., Kusova, A. M., Makarova, A. O. et al. (2020) Reciprocal effects of multi-walled carbon nanotubes and oppositely charged surfactants in bulk water and at interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, article 125296. https://doi.org/10.1016/j.colsurfa.2020.125296 (In English)
Zueva, O. S., Makarova, A. O., Khairutdinov, B. I. et al. (2021) Association of ionic surfactant in binary water—ethanol media as indicator of changes in structure and properties of solvent. Russian Chemical Bulletin, 70, 1185–1190. https://doi.org/10.1007/s11172-021-3203-6 (In English)
Zueva, O. S., Rukhlov, V. S., Zuev, Yu. F. (2022) Morphology of ionic micelles as studied by numerical solution of the Poisson equation. ACS omega, 7 (7), 6174–6183. https://doi.org/10.1021/acsomega.1c06665 (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2024 Иван Владимирович Лунев, Артур Альбертович Галиуллин, Юрий Фёдорович Зуев
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.