Тень черной дыры: экспериментальная проверка различных моделей и тени черной дыры Хейворда

Авторы

  • Виталий Дмитриевич Вертоградов Российский государственный педагогический университет имени А. И. Герцена; Санкт-Петербургское отделение Российской академии наук https://orcid.org/0000-0002-5096-7696
  • Алина Вячеславовна Шакун Российский государственный педагогический университет имени А. И. Герцена https://orcid.org/0009-0007-4550-6549
  • Марк Алексеевич Захаров Российский государственный педагогический университет имени А. И. Герцена https://orcid.org/0009-0003-1753-5239

DOI:

https://doi.org/10.33910/2687-153X-2024-5-3-154-166

Ключевые слова:

черная дыра, фотонная сфера, зависимость от массы, тень, динамическая черная дыра Хейворда

Аннотация

Недавние наблюдения теней черных дыр привнесли революционный взгляд на нашу способность исследовать гравитацию в экстремальных средах. В данной работе представлена новая аналитическая модель тени динамической черной дыры Хейворда. В статье показано, что при некотором выборе массы и регуляризационных функций это пространство-время допускает гомотетический вектор Киллинга, что позволяет свести дифференциальные уравнения движения второго порядка к уравнениям первого порядка. После этого вводится преобразование координат к конформно-статическим координатам и новая сохраняемая величина вдоль нулевых геодезических. По результатам решений сделаны выводы, что в динамическом случае параметр регуляризации всегда уменьшает радиус фотонной сферы. На основе экспериментальных данных, полученных коллаборацией The Event Horizon Telescope Collaboration, сравнены полученные изображения Стрельца A^* с тенью черной дыры Рейсснера — Нордстрема, Бардина и Хейворда соответственно.

Библиографические ссылки

Akiyama, K., Alberdi, A., Alef, W. et al. (2022) First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. The Astrophysical Journal Letters, 930 (2), article L12. https://doi.org/10.3847/2041-8213/ac6674 (In English)

Alberdi, A., Alef, W., Asada, K. et al. (2019) First M87 event horizon telescope results. I. The shadow of the supermassive black hole. The Astrophysical Journal Letters, 875, L1. https://doi.org/10.3847/2041-8213/ab0ec7 (In English)

Bardeen, J. (1968) Non-singular general relativistic gravitational collapse. Proceedings of the 5th International Conference on Gravitation and the Theory of Relativity, article 87. (In English)

Bardeen, J. M., Press, W. H., Teukolsky, S. A. (1972) Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophysical Journal, 178, 347–370. (In English)

Beesham, A., Ghosh, S. G. (2003) Naked singularities in the charged Vaidya–de Sitter spacetime. International Journal of Modern Physics D, 12 (5), 801–809. https://doi.org/10.1142/S0218271803003220 (In English)

Bonnor, W. B., Vaidya, P. C. (1970) Spherically symmetric radiation of charge in Einstein-Maxwell theory. General Relativity and Gravitation, 1, 127–130. https://doi.org/10.1007/BF00756891 (In English)

Falcke, H., Melia, F., Agol, E. (2000) The shadow of the black hole at the galactic center. AIP Conference Proceedings, 522 (1), 317–320. https://doi.org/10.1063/1.1291730 (In English)

Glass, E. N., Krisch, J. P. (1998) Radiation and string atmosphere for relativistic stars. Physical Review D, 57 (10), article R5945. https://doi.org/10.1103/PhysRevD.57.R5945 (In English)

Glass, E. N., Krisch, J. P. (1999) Two-fluid atmosphere for relativistic stars. Classical and Quantum Gravity, 16 (4), 1175–1184. https://doi.org/10.1088/0264-9381/16/4/007 (In English)

Hayward, S. A. (2006) Formation and evaporation of nonsingular black holes. Physical Review Letters, 96 (3), article 031103. https://doi.org/10.1103/PhysRevLett.96.031103 (In English)

Heydarzade, Y., Darabi, F. (2018a) Surrounded Bonnor-Vaidya solution by cosmological fields. The European Physical Journal C, 78, article 1004. https://doi.org/10.1140/epjc/s10052-018-6465-x (In English)

Heydarzade, Y., Darabi, F. (2018b) Surrounded Vaidya black holes: Apparent horizon properties. The European Physical Journal C, 78, article 342. https://doi.org/10.1140/epjc/s10052-018-5842-9 (In English)

Heydarzade, Y., Darabi, F. (2018c) Surrounded Vaidya solution by cosmological fields. The European Physical Journal C, 78, article 582. https://doi.org/10.1140/epjc/s10052-018-6041-4 (In English)

Heydarzade, Y., Vertogradov, V. (2024) Dynamical photon spheres in charged black holes and naked singularities. The European Physical Journal C, 84 (6), 582. https://doi.org/10.1140/epjc/s10052-024-12945-w (In English)

Husain, V. (1996) Exact solutions for null fluid collapse. Physical Review D, 53 (4), article R1759. https://doi.org/10.1103/PhysRevD.53.R1759 (In English)

Ibohal, N., Kapil, L. (2010) Charged black holes in Vaidya backgrounds: Hawking’s Radiation. International Journal of Modern Physics D, 19 (04), 437–464. https://doi.org/10.1142/S0218271810016518 (In English)

Koga, Y., Asaka, N., Kimura, M., Okabayashi, K. (2022) Dynamical photon sphere and time evolving shadow around black holes with temporal accretion. Physical Review D, 105 (10), article 104040. https://doi.org/10.1103/PhysRevD.105.104040 (In English)

Koh, S., Park, M., Sherif, A. M. (2024) Thermodynamics with conformal Killing vector in the charged Vaidya metric. Journal of High Energy Physics, 2024 (2), article 28. https://doi.org/10.1007/JHEP02(2024)028 (In English)

Lake, K., Zannias, T. (1991) Structure of singularities in the spherical gravitational collapse of a charged null fluid. Physical Review D, 43(6), article 1798. https://doi.org/10.1103/PhysRevD.43.1798 (In English)

Mishra, A. K., Chakraborty, S., Sarkar, S. (2019) Understanding photon sphere and black hole shadow in dynamically evolving spacetimes. Physical Review D, 99 (10), article 104080. https://doi.org/10.1103/PhysRevD.99.104080 (In English)

Nielsen, A. B. (2014). Revisiting vaidya horizons. Galaxies, 2 (1), 62–71. https://doi.org/10.3390/galaxies2010062 (In English)

Nielsen, A. B., Yoon, J. H. (2008) Dynamical surface gravity. Classical and Quantum Gravity, 25 (8), article 085010. https://doi.org/10.1088/0264-9381/25/8/085010 (In English)

Ojako, S., Goswami, R., Maharaj, S. D., Narain, R. (2020) Conformal symmetries in generalised Vaidya spacetimes. Classical and Quantum Gravity, 37 (5), article 055005. https://doi.org/10.1088/1361-6382/ab5e2d (In English)

Ovalle, J., Casadio, R., Contreras, E., Sotomayor, A. (2021) Hairy black holes by gravitational decoupling. Physics of the Dark Universe, 31, article 100744. https://doi.org/10.1016/j.dark.2020.100744 (In English)

Patil, K. D., Saraykar, R. V., Ghate, S. H. (1999) Strong curvature naked singularities in generalized Vaidya spacetimes. Pramana, 52, 553–559. https://doi.org/10.1007/BF02829863 (In English)

Perlick, V., Tsupko, O. Y. (2022) Calculating black hole shadows: Review of analytical studies. Physics Reports, 947, 1–39. https://doi.org/10.1016/j.physrep.2021.10.004 (In English)

Perlick, V., Tsupko, O. Y., Bisnovatyi-Kogan, G. S. (2015) Influence of a plasma on the shadow of a spherically symmetric black hole. Physical Review D, 92 (10), article 104031. https://doi.org/10.1103/PhysRevD.92.104031 (In English)

Santos, N. O. (1985) Non-adiabatic radiating collapse. Monthly Notices of the Royal Astronomical Society, 216 (2), 403–410. https://doi.org/10.1093/mnras/216.2.403 (In English)

Solanki, J., Perlick, V. (2022) Photon sphere and shadow of a time-dependent black hole described by a Vaidya metric. Physical Review D, 105 (6), article 064056. https://doi.org/10.1103/PhysRevD.105.064056 (In English)

Synge, J. L. (1966) The escape of photons from gravitationally intense stars. Monthly Notices of the Royal Astronomical Society, 131 (3), 463–466. https://doi.org/10.1093/mnras/131.3.463 (In English)

Tsupko, O. Y., Bisnovatyi-Kogan, G. S. (2020) First analytical calculation of black hole shadow in McVittie metric. International Journal of Modern Physics D, 29 (09), article 2050062. https://doi.org/10.1142/S0218271820500625 (In English)

Tsupko, O. Y., Fan, Z., Bisnovatyi-Kogan, G. S. (2020) Black hole shadow as a standard ruler in cosmology. Classical and Quantum Gravity, 37 (6), article 065016. https://doi.org/10.1088/1361-6382/ab6f7d (In English)

Vagnozzi, S., Bambi, C., Visinelli, L. (2020) Concerns regarding the use of black hole shadows as standard rulers. Classical and Quantum Gravity, 37 (8), article 087001. https://doi.org/10.1088/1361-6382/ab7965 (In English)

Vagnozzi, S., Roy, R., Tsai, Y. D. et al. (2023) Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. Classical and Quantum Gravity, 40 (16), article 165007. https://doi.org/10.1088/1361-6382/acd97b (In English)

Vaidya, P. C. (1951). Nonstatic solutions of Einstein’s field equations for spheres of fluids radiating energy. Physical Review, 83 (1), 10–17. https://doi.org/10.1103/PhysRev.83.10 (In English)

Vertogradov, V. (2022) The structure of the generalized Vaidya space–time containing the eternal naked singularity. International Journal of Modern Physics A, 37 (28n29), article 2250185. https://doi.org/10.1142/S0217751X22501858 (In English)

Vertogradov, V. (2023) Extraction energy from charged Vaidya black hole via the Penrose process. Communications in Theoretical Physics, 75 (4), article 045404. https://doi.org/10.1088/1572-9494/acc018 (In English)

Vertogradov, V. (2024) The generalized Vaidya spacetime with polytropic equation of state. General Relativity and Gravitation, 56 (5), article 59. https://doi.org/10.1007/s10714-024-03244-6 (In English)

Vertogradov, V., Kudryavcev, D. (2023) Generalized Vaidya spacetime: Horizons, conformal symmetries, surface gravity and diagonalization. Modern Physics Letters A, 38 (24n25), article 2350119. https://doi.org/10.1142/S0217732323501195 (In English)

Vertogradov, V., Ovgun, A. (2024a) Analyzing the influence of geometrical deformation on photon sphere and shadow radius: A new analytical approach—Spherically symmetric spacetimes. Physics of the Dark Universe, 45, article 101541. https://doi.org/10.1016/j.dark.2024.101541 (In English)

Vertogradov, V., Ovgun, A. (2024b) General approach on shadow radius and photon spheres in asymptotically flat spacetimes and the impact of mass-dependent variations. Physics Letters B, 854, article 138758. https://doi.org/10.1016/j.physletb.2024.138758 (In English)

Vertogradov, V., Ovgun, A., Pantig, R. C. (2024) Analyzing the influence of geometrical deformation on photon sphere and shadow radius: A new analytical approach-stationary, and axisymmetric spacetime. arXiv, 2405, article 05077. https://doi.org/10.48550/arXiv.2405.05077 (In English)

Wang, A., Wu, Y. (1999) Letter: Generalized vaidya solutions. General Relativity and Gravitation, 31, 107–114. https://doi.org/10.1023/A:1018819521971 (In English)

Опубликован

2024-10-15

Выпуск

Раздел

Theoretical Physics