Электретные свойства и электропроводность композитов полипропилен-полифениленсульфид

Авторы

  • Андрей Александрович Павлов Санкт-Петербургский политехнический университет Петра Великого https://orcid.org/0000-0001-5459-7509
  • Михаил Анатольевич Коваленко Институт механики металлополимерных систем им. В. А. Белого НАН Беларуси
  • Виктор Антонович Гольдаде Институт механики металлополимерных систем им. В. А. Белого НАН Беларуси; Гомельский государственный университет имени Франциска Скорины https://orcid.org/0000-0001-7964-8034
  • Маргарита Эдуардовна Борисова Санкт-Петербургский политехнический университет Петра Великого https://orcid.org/0000-0003-0761-6302
  • Сергей Валентинович Зотов Институт механики металлополимерных систем им. В. А. Белого НАН Беларуси https://orcid.org/0000-0002-4480-6503

DOI:

https://doi.org/10.33910/2687-153X-2025-6-1-17-25

Ключевые слова:

полипропилен, полифенилен сульфид, электрет, электропроводность, композиционный материал

Аннотация

Исследованы электретные свойства и электропроводность полимерных композитов полипропилен-полифениленсульфид (ПП-ПФС). Показано, что эффективная поверхностная плотность заряда значительно выше у волокнисто-пористых материалов (ВПМ) по сравнению с пленочными. Установлено, что на графиках зависимостей удельной электропроводности композитов от обратной температуры наблюдается излом при температуре примерно 110 °C. Высокотемпературный участок кривой характеризует собственную проводимость диэлектрика, низкотемпературный — «структурно чувствительную» или примесную. В спектрах токов термостимулированной деполяризации (ТСД) наблюдается два релаксационных максимума. Низкотемпературный максимум тока определяет процесс релаксации заряда, накопленного на границе раздела матрицы (ПП) и наполнителя (ПФС), что обусловлено поляризацией Максвелла — Вагнера. Высокотемпературный максимум тока предположительно связан с релаксационным процессом, обусловленным собственной проводимостью ПП в аморфной фазе.

Библиографические ссылки

Aniskina, L. B., Viktorovich, A. S., Galikhanov, M. F. et al. (2010) Polielektrolitnaya model’ voloknitov na osnove polietilena i polipropilena [Polyelectrolyte model of fibrites based on polyethylene and polypropylene]. Izvestiya Rossijskogo gosudarstvennogo pedagogicheskogo universiteta im. A. I. Gertsena — Izvestia: Herzen University Journal of Humanities & Sciences, 135, 24–36. (In Russian)

Bogorodickij, N. P. (1965) Teoriya dielektrikov. [The theory of dielectrics]. Leningrad: Energiya Publ., 344 p. (In Russian)

Borisova, M., Kojkov, S. (1979) Fizika dielektrikov [Physics of dielectrics]. Leningrad: Leningrad State University Publ., 240 p. (In Russian)

Borisova, M. E., Galukov, O. V., Tsatsynkin, P. V. (2004) Fizika dielektricheskikh materialov. Elektroperenos i nakoplenie zaryada v dielektrikakh [Physics of dielectric materials. Charge transfer and preservation in dielectrics]. Saint Petersburg: Saint Petersburg State University Publ., 106 p. https://doi.org/10.18720/SPBPU/2/si20-477 (In Russian)

Castro, R. A., Karulina, E. A., Galikhanov, M. F. et al. (2024) Relaxation of electric charge in polymer blends based on low-density polyethylene and copolymer of ethylene with vinyl acetate. St. Petersburg State Polytechnical University Journal: Physics and Mathematics, 17 (3), 36–45. https://doi.org/10.18721/JPM.17304 (In English)

Chen, C., Chen, G., Zhang, J. et al. (2023) Study on corona charging characteristic of melt-blown polypropylene electret fabrics. Journal of Electrostatics, 121, article 103782. https://doi.org/10.1016/j.elstat.2022.103782 (In English)

Galikhanov, M. F., Minzagirova, A. M., Spiridonova, R. R. (2019) Мodifying the properties of polyethylene electrets through the incorporation of montmorillonite. Surface Engineering and Applied Electrochemistry, 55, 679–683. https://doi.org/10.3103/S106837551906005X (In English)

Galikhanov, M. F., Minzagirova, A. M., Guliakova, A. A. et al. (2024a) Electret composite materials based on polyethylene and petroleum asphaltenes. IEEE Transactions on Dielectrics and Electrical Insulation, 31 (5), 2335–2342. https://doi.org/10.1109/TDEI.2024.3434774 (In English)

Galikhanov, M. F., Zhang, X., Ma, X. et al. (2024b) The effect of modifier on electret properties and hardness of epoxy composite material. IEEE Transactions on Dielectrics and Electrical Insulation, 31 (5), 2343–2349. https://doi.org/10.1109/TDEI.2024.3452655 (In English)

Goldade, V. A., Kovalenko, M. A., Garbaruk, V. Yu. et al. (2020) Formirovanie i relaksatsiya zaryada v nanokompozitakh na osnove polietilena [Formation and relaxation of charge in nanocomposites based on polyethylene]. Vestnik Grodnenskogo gosudarstvennogo universiteta im. Yanki Kupaly. Seriya 6. Tekhnika — Vesnik of Yanka Kupala State University of Grodno. Series 6. Engineering Science, 10 (2), 52–63. (In Russian)

Goldade, V. A., Kovalenko, M. A, Zotov, S. V. (2021) Electret charge in nanocomposites based on polyethylene. International Scientific Journal Theoretical & Applied Science, 193 (11), 759–765. https://dx.doi.org/10.15863/TAS (In English)

Goldade, V. A., Zotov, S. V., Shapovalov, V. M. et al. (2019) Electret effect in polymer nanocomposites (review). Polymer Materials and Technologies, 5 (2), 6–18. https://doi.org/10.32864/polymmattech-2019-5-2-6-18 (In English)

Gorokhovatskij, Yu. A. (1991) Termoaktivacionnaya tokovaya spektroskopiya vysokoomnyh poluprovodnikov i dielektrikov [Thermally activated current spectroscopy of high-resistance semiconductors and dielectrics]. M.: Nauka publ., 248 p. (In Russian)

Gorokhovatskij Yu. A., Demidova N. S., Temnov D. E. (2020) Electric charge relaxation in the polyethylene with mineral inclusions of diatomite. St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 13 (2), 9–16. https://doi.org/10.18721/JPM.13201 (In English)

Gorokhovatskij Yu. A., Sotova Yu. I., Temnov D. E. (2022) A study of charge relaxation in corona electrets based on P(VDF-TFE) copolymer. Physics of Complex Systems, 3 (3), 104–108. https://doi.org/10.33910/2687-153X-2022-3-3-104-108 (In English)

Guliakova, A., Henderyckx, A., Shishkin, N. et al. (2024) Influence of crystallinity and isotacticity on charge decay of polypropylene homopolymer blends. IEEE Transactions on Dielectrics and Electrical Insulation, 31 (5), 2358–2364. https://doi.org/10.1109/TDEI.2024.3417953 (In English)

Kara, Y., Molnar, K. (2021) A review of processing strategies to generate melt-blown nano/microfiber mats for high-efficiency filtration applications. Journal of Industrial Textiles, 51, 137–180. https://doi.org/10.1177/15280837211019488 (In English)

Kestelman, V. N. (2000) Electrets in Engineering: Fundamentals and Applications. New York: Springer Publ., 281 p. https://doi.org/10.1007/978-1-4615-4455-5 (In English)

Kovalenko, M. A., Goldade, V. A. (2021) Electret properties of nanocomposites based on polyethylene and polylactide. In: Proceedings of the 8th International Scientific and Practical Conference “International Forum: Problems and Scientific Solutions”. Melbourne: CSIRO Publ., pp. 295–303. (In English)

Kovalenko, M. A., Goldade, V. A., Zotov, S. V. et al. (2023) Elektretnoe sostoyanie v nanokompozitakh na osnove polilaktida [Electret state in nanocomposites based on polylactide]. Problemy fiziki, matematiki i tekhniki — Problems of Physics, Mathematics and Technics, 2 (55), 20–24. (In Russian)

Li, X., Wang, Y., Xu, M. et al. (2021) Polymer electrets and their applications. Journal of Applied Polymer Science, 138 (19), article 50406. https://doi.org/10.1002/app.50406 (In English)

Minzagirova, A. M., Galikhanov, M. F., Khayrullin, R. Z. (2021) Influence of montmorillonite on the change of electret properties of polypropylene. The VIII International Young Researchers’ Conference — Physics, Technology, InnovationS (PTI-2021), 2466 (1), article 060023. https://doi.org/10.1063/5.0089012 (In English)

Pinchuk, L. S. (2012) Melt blowing: Equipment, technology, and polymer fibrous materials. Berlin: Springer Publ., 224 p. https://doi.org/10.1007/978-3-642-55984-6 (In English)

Xiao, H. (2015) Study on correlation of filtration performance and charge behavior and crystalline structure for melt-blown polypropylene electret fabrics. Journal of Applied Polymer Science, 132 (47), article 42807. https://doi.org/10.1002/app.42807 (In English)

Zhang, J. (2020) Electret characteristics of melt-blown polylactic acid fabrics for air filtration application. Journal of Applied Polymer Science, 137 (4), article 48309. https://doi.org/10.1002/app.48309 (In English)

Загрузки

Опубликован

2025-02-28

Выпуск

Раздел

Condensed Matter Physics