Уровень прилива во временной и частотной областях в порту дили: характерная особенность осциллятора Лоренца

Авторы

  • Абелито Филипе Белу Национальный университет Восточного Тимора
  • Кенджи Саса Порт Дили, Технический отдел
  • Хосе Мадейра Маркес Порт Дили, Технический отдел
  • Коичи Шимакава Университет Гифу

DOI:

https://doi.org/10.33910/2687-153X-2021-2-1-41-48

Ключевые слова:

уровень прилива, быстрое преобразование Фурье (БПФ), автокорреляционная функция, осциллятор Лоренца, флуктуация 1/f

Аннотация

Уровень прилива в течение одного года, измеренный в порту Дили (Восточный Тимор), анализируется по частотному спектру с помощью быстрого преобразования Фурье (БПФ) вместе с функцией автокорреляции (АФ). Спектр частот показывает характерную особенность резонанса типа Лоренца (осциллятор Лоренца) с особыми пиками, которые приписываются основным составляющим прилива, связанным с гравитационным движением Луны и Солнца. Резонанс лоренцевского типа возникает в системе «вода — жидкость» при периодическом изменении гравитационного потенциала, подобно электронной поляризации при изменении электрического потенциала. Характер 1/f, обнаруженный на высоких частотах в спектре мощности (так называемый характер 1/f в частотной области), может быть вызван только гравитационным эффектом, в то время как его происхождение обычно обсуждается с точки зрения метеорологии, например атмосферного давления.

Библиографические ссылки

Andrade, M. M., Toldo, E. E., Nunes, J. C. R. (2018) Tidal and subtidal oscillations in a shallow water system in southern Brazil. Brazilian Journal of Oceanography, 66 (3), 245–254. https://doi.org/10.1590/s1679-87592018017406603 (In English)

Banno, M., Kuriyama, Y. (2012) The characteristic of shoreline response to cyclic tidal change. Journal of Japan Society of Civil Engineers, Series B2 (Coastal Engineering), 68 (2), 576–580. https://www.doi.org/10.2208/kaigan.68.I_576 (In Japanese)

Draper, S., Adcock, T. A., Borthwick, A. G., Houlsby, G. T. (2014) An electrical analogy for the Pentland Firth tidal stream power resource. Proceedings of the Royal Society A, 470 (2161), article 20130207. https://www.doi.org/10.1098/rspa.2013.0207 (In English)

Franco, A. S. (1988) Tides: fundamentals, analysis and prediction. São Paulo: Fundação Centro Tecnológico de Hidráulica, 249 p. (In English)

Garrett, C., Cummins, P. (2005) The power potential of tidal currents in channels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461 (2060), 2563–2572. https://doi.org/10.1098/rspa.2005.1494 (In English)

Geng, X., Boufadel, M. C. (2017) Spectral responses of gravel beaches to tidal signals. Scientific Reports, 7, article 40770. https://www.doi.org/10.1038/srep40770 (In English)

Kleinhans, M. G., van der Vegt, M., Leuven, J. et al. (2017) Turning the tide: Comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries. Earth Surface Dynamics, 5 (4), 731–756. https://www.doi.org/10.5194/esurf-5-731-2017 (In English)

Kogan, S. (2008) Electronic noise and fluctuations in solids. Cambridge: Cambridge University Press, 376 p. (In English)

Marone, E., Raicich, F., Mosetti, R. (2013) Harmonic tidal analysis methods on time and frequency domains: Similarities and differences for the Gulf of Trieste, Italy, and Paranaguá Bay, Brazil. Bollettino di Geofisica Teorica ed Applicata, 54 (2), 183–204. https://www.doi.org/10.4430/bgta0068 (In English)

Matsumoto, K., Ooe, M., Sato, T., Segawa, J. (1995) Ocean tide model obtained from TOPEX/POSEIDON altimetry data. Journal of Geophysical Research: Oceans, 100 (C12), 25319–25330. https://www.doi.org/10.1029/95JC02777 (In English)

Murthy, K. S. R., Rahi, O. P. (2014). Estimation of Weibull parameters using graphical method for wind energy applications. In: 2014 Eighteenth National Power Systems Conference (NPSC). Guwahati: IEEE Publ. [Online]. https://www.doi.org/10.1109/NPSC.2014.7103858 (accessed 10.01.2021). (In English)

Papoulis, A. (1962) The fourier integral and its applications. New York: McGraw-Hill Publ., 318 p. (In English)

Pawlowicz, R., Beardsley, B., Lentz, S. (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28 (8), 929–937. https://www.doi.org/10.1016/S0098-3004(02)00013-4 (In English)

Prandle, D. (1980) Modelling of tidal barrier schemes: An analysis of the open-boundary problem by reference to AC circuit theory. Estuarine and Coastal Marine Science, 11 (1), 53–71. https://www.doi.org/10.1016/S0302-3524(80)80029-6 (In English)

Pugh, D. T. (1996) Tides, surges and mean sea-level: A handbook for engineers and scientists. Chichester: Wiley Publ., 472 p. (In English)

Ro, Y. J. (2007) Tidal and sub-tidal current characteristics in the Kangjin Bay, South Sea, Korea. Ocean Science Journal, 42 (1), 19–30. https://www.doi.org/10.1007/BF03020907 (In English)

Ro, Y. J., Jung, K. Y., Jun, W. S., Eom, H. M. (2007) Numerical modeling of tide and tidal current in the Kangjin Bay, South Sea, Korea. Ocean Science Journal, 42 (3), 153–163. https://www.doi.org/10.1007/BF03020919 (In English)

Stephenson, A. G. (2016) TideHarmonics: Harmonic analysis of tides. [Online]. Available at: https://cran.r-project.org/package=TideHarmonics (accessed 10.01.2021). (In English)

Stewart, R. H. (2008) Introduction to physical oceanography. [Online]. Available at: http://hdl.handle.net/1969.1/160216 (accessed 10.01.2021). (In English)

Tomaselli, P. D., Re, C. L., Ferreri, G. B. (2011) Analysis of tide measurements in a Sicilian harbour. In: H. Schüttrumpf, R. Tomasicchio (eds.). 5th SCACR 2011. International Short Conference on Applied Coastal Research. Graz: Institute of Hydraulic Engineering and Water Resources Management Publ., pp. 579–586. (In English)

Truccolo, E. C., Franco, D., Schettini, C. A. F. (2006) The low frequency sea level oscillations in the northern coast of Santa Catarina, Brazil. Journal of Coastal Research, SI 39, 547–552. (In English)

Walpole, R. E., Myers, R. H., Myers, S. L., Ye, K. (2017) Probability and statistics for engineers and scientists. 9th ed. Singapore: Pearson Education South Asia Pte Ltd. Publ., 811 p. (In English)

Wooten, F. (1972) Optical properties of solids. New York: Academic Press, 272 p. https://doi.org/10.1016/C2013-0-07656-6 (In English)

Zonst, A. E. (2004) Understanding the FFT applications: A tutorial for students & working engineers. 2nd ed., rev. Titusville: Citrus Press., 182 p. (In English)

Опубликован

2021-03-29

Выпуск

Раздел

Astrophysics and Stellar Astronomy