Local structure of amorphous and crystalline Ge2Sb2Te5 films

Authors

DOI:

https://doi.org/10.33910/2687-153X-2021-2-2-61-67

Keywords:

Mössbauer spectroscopy, phase-memory, Ge2Sb2Te5, local structure, X-ray fluorescence analysis

Abstract

An effective way to examine structural rearrangement in solids is Mössbauer spectroscopy. A key requirement to Mössbauer probes used for these purposes is the possibility of their localization in a certain site of the crystal lattice or in the structural network of the amorphous material. When absorption spectroscopy is used to examine the local structure of crystalline and amorphous Ge2Sb2Te5 films, this requirement is satisfied for 119Sn isotope. Tin atoms 119Sn isovalently substitute germanium atoms in the structure of both vitreous and crystalline germanium tellurides. The absorption Mössbauer spectroscopy on 119Sn impurity centers shows that germanium atoms in the structure of amorphous and polycrystalline Ge2Sb2Te5 films have different local symmetries (tetrahedral in the amorphous phase and octahedral in the crystalline).

References

Bobokhuzhaev, K., Marchenko, A., Seregin, P. (2020) Structural and antistructural defects in chalcogenide semiconductors. Mossbauer spectroscopy. S. l.: LAP Lambert Academic Publ., 282 p. (In English)

Hu, C., Yang, Z., Bi, C. et al. (2020) “All-crystalline” phase transition in nonmetal doped germanium–antimony– tellurium films for high-temperature non-volatile photonic applications. Acta Materialia, 188, 121–130. https://doi.org/10.1016/j.actamat.2020.02.005 (In English)

Kato, T., Tanaka, K. (2005) Electronic properties of amorphous and crystalline Ge2Sb2Te5 films. Japanese Journal of Applied Physics. Part 1: Regular Papers and Short Notes and Review Papers, 44 (10R), 7340–7344. https://doi.org/10.1143/JJAP.44.7340 (In English)

Kolobov, A. V., Fons, P., Frenkel, A. I. et al. (2004) Understanding the phase-change mechanism of rewritable optical media. Nature Materials, 3 (10), 703–708. https://doi.org/10.1038/nmat1215 (In English)

Marchenko, A. V., Seregin, P. P., Terukov, E. I., Shakhovich, K. B. (2019) Antisite defects in Ge–Te and Ge–As–Te semiconductor glasses. Semiconductors, 53 (5), 711–716. https://doi.org/10.1134/S1063782619050166 (In English)

Micoulaut, M., Gunasekera, K., Ravindren, S., Boolchand, P. (2014) Quantitative measure of tetrahedral-sp3 geometries in amorphous phase-change alloys. Physical Review B, 90 (9), article 094207. https://doi.org/10.1103/ PhysRevB.90.094207 (In English)

Seregina, L. N., Nasredinov, F. S., Melekh, B. T. et al. (1977) Issledovanie lokal’noj struktury stekol v sistemakh kremnij-tellur, germanij-tellur i germanij-tellur-mysh’yak s pomoshch’yu messbauerovskoj spektroskopii na primesnykh atomakh olova [Study of the local structure of glasses in silicon-tellurium, germanium-tellurium and germanium-tellurium-arsenic systems using Mössbauer spectroscopy on impurity tin atoms]. Fizika i khimiya stekla — Glass Physics and Chemistry, 3 (4), 328–331. (In Russian)

Shelby, R. M., Raoux, S. (2009) Crystallization dynamics of nitrogen-doped Ge2Sb2Te5. Journal of Applied Physics, 105 (10), article 104902. https://doi.org/10.1063/1.3126501 (In English)

Siegrist, T., Jost, P., Volker, H. et al. (2011) Disorder-induced localization in crystalline phase-change materials. Nature Materials, 10 (3), 202–208. https://doi.org/10.1038/nmat2934 (In English)

Sousa, V. (2011) Chalcogenide materials and their application to Non-Volatile Memories. Microelectronic Engineering, 88 (5), 807–813. https://doi.org/10.1016/j.mee.2010.06.042 (In English)

Published

2021-06-17

Issue

Section

Condensed Matter Physics