Модель деформационного упрочнения в нанокерамике с аморфными межкристаллическими слоями

Авторы

  • Михаил Юрьевич Гуткин Институт проблем машиноведения Российской академии наук https://orcid.org/0000-0003-0727-6352
  • Кристина Норайровна Микаелян Институт проблем машиноведения Российской академии наук

DOI:

https://doi.org/10.33910/2687-153X-2021-2-2-51-60

Ключевые слова:

нанокристаллическая керамика, аморфные межкристаллические слои, включения, жидкоподобная фаза, пластическая деформация, деформационное упрочнение

Аннотация

Предложена теоретическая модель, описывающая развитие пластической деформации в аморфных межкристаллитных слоях в нанокристаллической керамике как процесс гомогенного зарождения включений жидкоподобной фазы, их растяжение и дальнейшее проникновение в соседние слои через их тройные стыки. Энергетические характеристики этих стадий рассчитаны и детально проанализированы. Показано, что стадия зародышеобразования может быть реализована в безбарьерном режиме, когда приложенное напряжение сдвига достигает своего критического значения, зависящего от температуры механического испытания. Стадия проплавления процесса деформации требует некоторого увеличения прикладываемого напряжения сдвига и, следовательно, приводит к деформационному упрочнению модельной нанокристаллической керамики. Соответствующее напряжение течения увеличивается с уменьшением размера зерна нанокерамики и снижением температуры испытаний.

Библиографические ссылки

Bobylev, S. V., Gutkin, M. Yu., Ovid’ko, I. A. (2008) Plastic deformation transfer through the amorphous intercrystallite phase in nanoceramics. Physics of the Solid State, 50 (10), 1888–1894. https://doi.org/10.1134/S106378340810017X (In English)

Bobylev, S. V., Ovid’ko, I. A. (2008) Dislocation nucleation at amorphous intergrain boundaries in deformed nanoceramics. Physics of the Solid State, 50 (4), 642–648. https://doi.org/10.1134/S1063783408040082 (In English)

Chen, D., Zhang, X.-F., Ritchie, R. O. (2000) Effects of grain-boundary structure on the strength, toughness, and cyclic-fatigue properties of a monolithic silicon carbide. Journal of the American Ceramic Society, 83 (8), 2079–2081. https://doi.org/10.1111/j.1151-2916.2000.tb01515.x (In English)

Clarke, D. R. (1979) On the detection of thin intergranular films by electron microscopy. Ultramicroscopy, 4 (1), 33–44. https://doi.org/10.1016/0304-3991(79)90006-8 (In English)

Clarke, D. R. (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials. Journal of the American Ceramic Society, 70 (1), 15–22. https://doi.org/10.1111/j.1151-2916.1987.tb04846.x (In English)

Demkowicz, M. J., Argon, A. S. (2004) High-density liquidlike component facilitates plastic flow in a model amorphous silicon system. Physical Review Letters, 93 (2), article 025505. https://doi.org/10.1103/PhysRevLett.93.025505 (In English)

Demkowicz, M. J., Argon, A. S. (2005a) Autocatalytic avalanches of unit inelastic shearing events are the mechanism of plastic deformation in amorphous silicon. Physical Review B, 72 (24), article 245206. https://doi.org/10.1103/ PhysRevB.72.245206 (In English)

Demkowicz, M. J., Argon, A. S. (2005b) Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Physical Review B, 72 (24), article 245205. https://doi.org/10.1103/PhysRevB.72.245205 (In English)

Demkowicz, M. J., Argon, A. S., Farkas, D., Frary, M. (2007) Simulation of plasticity in nanocrystalline silicon. Philosophical Magazine, 87 (28), 4253–4271. https://doi.org/10.1080/14786430701358715 (In English)

Dufour, L.-C., Monty, C., Petot-Ervas, G. (eds.). (1989) Surfaces and interfaces of ceramic materials. Dordrecht; Boston; London: Kluwer Publ., 820 p. https://www.doi.org/10.1007/978-94-009-1035-5 (In English)

Glezer, A., Pozdnyakov, V. (1995) Structural mechanism of plastic deformation of nanomaterials with amorphous intergranular layers. Nanostructured Materials, 6 (5-8), 767–769. https://doi.org/10.1016/0965-9773(95)00171-9 (In English)

Gutkin, M. Yu., Ovid’ko, I. A. (2009) Plastic flow in amorphous covalent solids and nanoceramics with amorphous intergranular layers. Reviews on Advanced Materials Science, 21 (2), 139–154. (In English)

Gutkin, M. Yu., Ovid’ko, I. A. (2010a) A composite model of the plastic flow of amorphous covalent materials. Physics of the Solid State, 52 (1), 58–64. https://doi.org/10.1134/S1063783410010105 (In English)

Gutkin, M. Yu., Ovid’ko, I. A. (2010b) Plastic flow and fracture of amorphous intercrystalline layers in ceramic nanocomposites. Physics of the Solid State, 52 (4), 718–727. https://doi.org/10.1134/S1063783410040086 (In English)

Gutkin, M. Yu., Ovid’ko, I. A., Pande, C. S. (2004) Yield stress of nanocrystalline materials: Role of grain-boundary dislocations, triple junctions and Coble creep. Philosophical Magazine, 84 (9), 847–863. https://doi.org/10.1080/14786430310001616063 (In English)

Gutkin, M. Yu., Ovid’ko, I. A., Skiba, N. V. (2004) Emission of partial dislocations by grain boundaries in nanocrystalline metals. Physics of the Solid State, 46 (11), 2042–2052. https://doi.org/10.1134/1.1825547 (In English)

Hoffmann, M. J., Petzow, G. (eds.). (1994) Tailoring of mechanical properties of Si3N4 ceramics. Dordrecht: Springer Publ., 451 p. https://www.doi.org/10.1007/978-94-011-0992-5 (In English)

Hulbert, D. M., Jiang, D., Kuntz, J. D. et al. (2007) A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic. Scripta Materialia, 56 (12), 1103–1106. https://doi.org/10.1016/j.scriptamat.2007.02.003 (In English)

Keblinski, P., Phillpot, S. R., Wolf, D. et al. (1996) Thermodynamic criterion for the stability of amorphous intergranular films in covalent materials. Physical Review Letters, 77 (14), 2965–2968. https://doi.org/10.1103/PhysRevLett.77.2965 (In English)

Keblinski, P., Phillpot, S. R., Wolf, D., Gleiter, H. (1997) Amorphous structure of grain boundaries and grain junctions in nanocrystalline silicon by molecular-dynamics simulation. Acta Materialia, 45 (3), 987–998. https://doi.org/10.1016/S1359-6454(96)00236-4 (In English)

Kleebe, H. J. (1997) Structure and chemistry of interfaces in Si3N4 ceramics studied by transmission electron microscopy. Journal of the Ceramic Society of Japan, 105 (1222), 453–475. https://doi.org/10.2109/jcersj.105.453 (In English)

Kleebe, H.-J., Cinibulk, M. K., Cannon, R. M., Rüble, M. (1993) Statistical analysis of the intergranular film thickness in silicon nitride ceramics. Journal of the American Ceramic Society, 76 (8), 1969–1977. https://doi.org/10.1111/j.1151-2916.1993.tb08319.x (In English)

Kleebe, H. J., Hoffmann, M. J., Ruehle, M. (1992) Influence of secondary phase chemistry on grain boundary film thickness in silicon nitride. Zeitschrift für Metallkunde, 83 (8), 610–617. (In English)

Mo, Y. F., Szlufarska, I. (2007) Simultaneous enhancement of toughness, ductility, and strength of nanocrystalline ceramics at high strain-rates. Applied Physics Letters, 90 (18), article 181926. https://doi.org/10.1063/1.2736652 (In English)

Ovid’ko, I. A., Sheinerman, A. G. (2009) Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Materialia, 57 (7), 2217–2228. https://doi.org/10.1016/j.actamat.2009.01.030 (In English)

Ovid’ko, I. A., Skiba, N. V., Sheіnerman, A. G. (2008) Influence of grain boundary sliding on fracture toughness of nanocrystalline ceramics. Physics of the Solid State, 50 (7), 1261–1265. https://doi.org/10.1134/S1063783408070123 (In English)

Pozdnyakov, V. A., Glezer, A. M. (1995) Anomalies of Hall-Petch dependence for nanocrystalline materials. Technical Physics Letters, 21 (1), 31–36. (In English)

Romanov, A. E., Vladimirov, V. I. (1992) Disclinations in crystalline solids. In: F. R. N. Nabarro (ed.). Dislocations in solids. Vol. 9. Amsterdam; London; New York: North-Holland Publ., pp. 191–402. (In English)

Subramaniam, A., Koch, C. T., Cannon, R. M., Rühle, M. (2006) Intergranular glassy films: An overview. Materials Science and Engineering A, 422 (1-2), 3–18. https://doi.org/10.1016/j.msea.2006.01.004 (In English)

Szlufarska, I., Nakano, A., Vashishta, P. (2005) A crossover in the mechanical response of nanocrystalline ceramics. Science, 309 (5736), 911–914. https://doi.org/10.1126/science.1114411 (In English)

Tomsia, A. P., Glaeser, A. M. (eds.). (1998) Ceramic microstructures: Control at the atomic level. Boston: Springer Publ., 854 p. https://www.doi.org/10.1007/978-1-4615-5393-9 (In English)

Xu, X., Nishimura, T., Hirosaki, N. et al. (2006) Superplastic deformation of nano-sized silicon nitride ceramics. Acta Materialia, 54 (1), 255–262. https://doi.org/10.1016/j.actamat.2005.09.005 (In English)

Zhang, Z. L., Sigle, W., Koch, C. T. et al. (2011) Dynamic behavior of nanometer-scale amorphous intergranular film in silicon nitride by in situ high-resolution transmission electron microscopy. Journal of the European Ceramic Society, 31 (9), 1835–1840. https://doi.org/10.1016/j.jeurceramsoc.2011.03.016 (In English)

Опубликован

2021-06-17

Выпуск

Раздел

Condensed Matter Physics