A model of strain hardening in nanoceramics with amorphous intercrystalline layers

Authors

  • Mikhail Yu. Gutkin Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences https://orcid.org/0000-0003-0727-6352
  • Kristina N. Mikaelyan Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences

DOI:

https://doi.org/10.33910/2687-153X-2021-2-2-51-60

Keywords:

nanocrystalline ceramics, amorphous intercrystalline layers, inclusions, liquid-like phase, plastic deformation, strain hardening

Abstract

The article suggests a theoretical model which describes the development of plastic deformation within amorphous intercrystalline layers in nanocrystalline ceramics as a process of homogeneous generation of inclusions of the liquid-like phase, their extension and further penetration to neighbouring layers through triple junctions. The energetic characteristics of these stages are calculated and analysed in detail. It is shown that the nucleation stage can be realised in the barrier-less regime when the applied shear stress reaches its critical value which depends on the temperature of the mechanical testing. The penetration stage of the deformation process needs some increase in the applied shear stress and, therefore, leads to strain hardening of the model nanocrystalline ceramics. The corresponding flow stress increases with diminishing grain size of the nanoceramics and lowering temperature of testing.

References

Bobylev, S. V., Gutkin, M. Yu., Ovid’ko, I. A. (2008) Plastic deformation transfer through the amorphous intercrystallite phase in nanoceramics. Physics of the Solid State, 50 (10), 1888–1894. https://doi.org/10.1134/S106378340810017X (In English)

Bobylev, S. V., Ovid’ko, I. A. (2008) Dislocation nucleation at amorphous intergrain boundaries in deformed nanoceramics. Physics of the Solid State, 50 (4), 642–648. https://doi.org/10.1134/S1063783408040082 (In English)

Chen, D., Zhang, X.-F., Ritchie, R. O. (2000) Effects of grain-boundary structure on the strength, toughness, and cyclic-fatigue properties of a monolithic silicon carbide. Journal of the American Ceramic Society, 83 (8), 2079–2081. https://doi.org/10.1111/j.1151-2916.2000.tb01515.x (In English)

Clarke, D. R. (1979) On the detection of thin intergranular films by electron microscopy. Ultramicroscopy, 4 (1), 33–44. https://doi.org/10.1016/0304-3991(79)90006-8 (In English)

Clarke, D. R. (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials. Journal of the American Ceramic Society, 70 (1), 15–22. https://doi.org/10.1111/j.1151-2916.1987.tb04846.x (In English)

Demkowicz, M. J., Argon, A. S. (2004) High-density liquidlike component facilitates plastic flow in a model amorphous silicon system. Physical Review Letters, 93 (2), article 025505. https://doi.org/10.1103/PhysRevLett.93.025505 (In English)

Demkowicz, M. J., Argon, A. S. (2005a) Autocatalytic avalanches of unit inelastic shearing events are the mechanism of plastic deformation in amorphous silicon. Physical Review B, 72 (24), article 245206. https://doi.org/10.1103/ PhysRevB.72.245206 (In English)

Demkowicz, M. J., Argon, A. S. (2005b) Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Physical Review B, 72 (24), article 245205. https://doi.org/10.1103/PhysRevB.72.245205 (In English)

Demkowicz, M. J., Argon, A. S., Farkas, D., Frary, M. (2007) Simulation of plasticity in nanocrystalline silicon. Philosophical Magazine, 87 (28), 4253–4271. https://doi.org/10.1080/14786430701358715 (In English)

Dufour, L.-C., Monty, C., Petot-Ervas, G. (eds.). (1989) Surfaces and interfaces of ceramic materials. Dordrecht; Boston; London: Kluwer Publ., 820 p. https://www.doi.org/10.1007/978-94-009-1035-5 (In English)

Glezer, A., Pozdnyakov, V. (1995) Structural mechanism of plastic deformation of nanomaterials with amorphous intergranular layers. Nanostructured Materials, 6 (5-8), 767–769. https://doi.org/10.1016/0965-9773(95)00171-9 (In English)

Gutkin, M. Yu., Ovid’ko, I. A. (2009) Plastic flow in amorphous covalent solids and nanoceramics with amorphous intergranular layers. Reviews on Advanced Materials Science, 21 (2), 139–154. (In English)

Gutkin, M. Yu., Ovid’ko, I. A. (2010a) A composite model of the plastic flow of amorphous covalent materials. Physics of the Solid State, 52 (1), 58–64. https://doi.org/10.1134/S1063783410010105 (In English)

Gutkin, M. Yu., Ovid’ko, I. A. (2010b) Plastic flow and fracture of amorphous intercrystalline layers in ceramic nanocomposites. Physics of the Solid State, 52 (4), 718–727. https://doi.org/10.1134/S1063783410040086 (In English)

Gutkin, M. Yu., Ovid’ko, I. A., Pande, C. S. (2004) Yield stress of nanocrystalline materials: Role of grain-boundary dislocations, triple junctions and Coble creep. Philosophical Magazine, 84 (9), 847–863. https://doi.org/10.1080/14786430310001616063 (In English)

Gutkin, M. Yu., Ovid’ko, I. A., Skiba, N. V. (2004) Emission of partial dislocations by grain boundaries in nanocrystalline metals. Physics of the Solid State, 46 (11), 2042–2052. https://doi.org/10.1134/1.1825547 (In English)

Hoffmann, M. J., Petzow, G. (eds.). (1994) Tailoring of mechanical properties of Si3N4 ceramics. Dordrecht: Springer Publ., 451 p. https://www.doi.org/10.1007/978-94-011-0992-5 (In English)

Hulbert, D. M., Jiang, D., Kuntz, J. D. et al. (2007) A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic. Scripta Materialia, 56 (12), 1103–1106. https://doi.org/10.1016/j.scriptamat.2007.02.003 (In English)

Keblinski, P., Phillpot, S. R., Wolf, D. et al. (1996) Thermodynamic criterion for the stability of amorphous intergranular films in covalent materials. Physical Review Letters, 77 (14), 2965–2968. https://doi.org/10.1103/PhysRevLett.77.2965 (In English)

Keblinski, P., Phillpot, S. R., Wolf, D., Gleiter, H. (1997) Amorphous structure of grain boundaries and grain junctions in nanocrystalline silicon by molecular-dynamics simulation. Acta Materialia, 45 (3), 987–998. https://doi.org/10.1016/S1359-6454(96)00236-4 (In English)

Kleebe, H. J. (1997) Structure and chemistry of interfaces in Si3N4 ceramics studied by transmission electron microscopy. Journal of the Ceramic Society of Japan, 105 (1222), 453–475. https://doi.org/10.2109/jcersj.105.453 (In English)

Kleebe, H.-J., Cinibulk, M. K., Cannon, R. M., Rüble, M. (1993) Statistical analysis of the intergranular film thickness in silicon nitride ceramics. Journal of the American Ceramic Society, 76 (8), 1969–1977. https://doi.org/10.1111/j.1151-2916.1993.tb08319.x (In English)

Kleebe, H. J., Hoffmann, M. J., Ruehle, M. (1992) Influence of secondary phase chemistry on grain boundary film thickness in silicon nitride. Zeitschrift für Metallkunde, 83 (8), 610–617. (In English)

Mo, Y. F., Szlufarska, I. (2007) Simultaneous enhancement of toughness, ductility, and strength of nanocrystalline ceramics at high strain-rates. Applied Physics Letters, 90 (18), article 181926. https://doi.org/10.1063/1.2736652 (In English)

Ovid’ko, I. A., Sheinerman, A. G. (2009) Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Materialia, 57 (7), 2217–2228. https://doi.org/10.1016/j.actamat.2009.01.030 (In English)

Ovid’ko, I. A., Skiba, N. V., Sheіnerman, A. G. (2008) Influence of grain boundary sliding on fracture toughness of nanocrystalline ceramics. Physics of the Solid State, 50 (7), 1261–1265. https://doi.org/10.1134/S1063783408070123 (In English)

Pozdnyakov, V. A., Glezer, A. M. (1995) Anomalies of Hall-Petch dependence for nanocrystalline materials. Technical Physics Letters, 21 (1), 31–36. (In English)

Romanov, A. E., Vladimirov, V. I. (1992) Disclinations in crystalline solids. In: F. R. N. Nabarro (ed.). Dislocations in solids. Vol. 9. Amsterdam; London; New York: North-Holland Publ., pp. 191–402. (In English)

Subramaniam, A., Koch, C. T., Cannon, R. M., Rühle, M. (2006) Intergranular glassy films: An overview. Materials Science and Engineering A, 422 (1-2), 3–18. https://doi.org/10.1016/j.msea.2006.01.004 (In English)

Szlufarska, I., Nakano, A., Vashishta, P. (2005) A crossover in the mechanical response of nanocrystalline ceramics. Science, 309 (5736), 911–914. https://doi.org/10.1126/science.1114411 (In English)

Tomsia, A. P., Glaeser, A. M. (eds.). (1998) Ceramic microstructures: Control at the atomic level. Boston: Springer Publ., 854 p. https://www.doi.org/10.1007/978-1-4615-5393-9 (In English)

Xu, X., Nishimura, T., Hirosaki, N. et al. (2006) Superplastic deformation of nano-sized silicon nitride ceramics. Acta Materialia, 54 (1), 255–262. https://doi.org/10.1016/j.actamat.2005.09.005 (In English)

Zhang, Z. L., Sigle, W., Koch, C. T. et al. (2011) Dynamic behavior of nanometer-scale amorphous intergranular film in silicon nitride by in situ high-resolution transmission electron microscopy. Journal of the European Ceramic Society, 31 (9), 1835–1840. https://doi.org/10.1016/j.jeurceramsoc.2011.03.016 (In English)

Published

2021-06-17

Issue

Section

Condensed Matter Physics