Effect of doping of molybdenum on the optical properties of glasses of the As—S system

Authors

DOI:

https://doi.org/10.33910/2687-153X-2021-2-3-115-121

Keywords:

arsenic sulfide, molybdenum, spin-coating, optical band gap, Urbach energy

Abstract

This article discusses the spectral dependences of the absorption coefficient of thin arsenic sulphide films obtained by spin-coating, identified using a single-beam spectrophotometer in the wavelength range of 400–1000 nm. The effect of doping of molybdenum on the optical band gap is studied. While for a pure glass the band gap decreases with higher sulphur concentration, the opposite trend is observed in glass doped with molybdenum. Molybdenum doping also leads to an increase in Urbach energy. The obtained experimental curves are compared with theoretical ab-initio calculations.

References

Clark, S. J., Segall, M. D., Pickard, C. J. et al. (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie. Crystalline Materials, 220 (5-6), 567–570. https://doi.org/10.1524/zkri.220.5.567.65075 (In English)

Kastner, M., Adler, D., Fritzsche, H. (1976) Valence-alternation model for localized gap states in lone-pair semiconductors. Physical Review Letters, 37 (22), article 1504. https://doi.org/10.1103/PhysRevLett.37.1504 (In English)

Kolobov, A. V. (ed.). (2006) Photo-induced metastability in amorphous semiconductors. Berlin: John Wiley & Sons Publ., 412 p. https://www.doi.org/10.1002/9783527602544 (In English)

Kolobov, A. V., Saito, Y., Fons, P., Krbal, M. (2020) Structural metastability in chalcogenide semiconductors: The role of chemical bonding. Physica Status Solidi (B), 257 (11), article 2000138. https://doi.org/10.1002/pssb.202000138 (In English)

Krbal, M., Wagner, T., Kohoutek, T. et al. (2007) The comparison of Ag–As33S67 films prepared by thermal evaporation (TE), spin-coating (SC) and a pulsed laser deposition (PLD). Journal of Physics and Chemistry of Solids, 68 (5-6), 953–957. https://doi.org/10.1016/j.jpcs.2007.03.036 (In English)

Lazarenko, P. I., Vorob’yev, Yu. V., Fedyanina, M. Ye. et al. (2019) Osobennosti opredeleniya opticheskoj shiriny zapreshchennoj zony tonkikh plenok materialov fazovoj pamyati [Particularities of estimating the optical band gap of the phase change memory thin films]. Perspektivnye materialy, 10, 14–25. https://doi.org/10.30791/1028-978X-2019-10-14-25 (In Russian)

Mott, N. F., Davis, E. A. (1979) Electronic processes in non-crystalline materials. 2nd ed. Oxford: Clarendon Press; New York: Oxford University Press, 608 p. (In English)

Němec, P., Jedelský, J., Frumar, M. et al. (2005) Structure of pulsed-laser deposited arsenic-rich As–S amorphous thin films, and effect of light and temperature. Journal of Non-Crystalline Solids, 351 (43-45), 3497–3502. https://doi.org/10.1016/j.jnoncrysol.2005.08.036 (In English)

Perdew, J. P. (1985) Density functional theory and the band gap problem. International Journal of Quantum Chemistry, 28 (S19), 497–523. https://doi.org/10.1002/qua.560280846 (In English)

Tauc, J., Grigorovici, R., Vancu, A. (1966) Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (B), 15 (2), 627–637. https://doi.org/10.1002/pssb.19660150224 (In English)

Urbach, F. (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92 (5), article 1324. https://doi.org/10.1103/PhysRev.92.1324 (In English)

Yamaguchi, M. (1985) The relationship between optical gap and chemical composition in chalcogenide glasses. Philosophical Magazine B, 51 (6), 651–663. https://doi.org/10.1080/13642818508243153 (In English)

Published

2021-09-07

Issue

Section

Condensed Matter Physics