Механические напряжения в тонких пленках цирконата-титаната свинца, сформированных на подложках, отличающихся температурными коэффициентами линейного расширения
DOI:
https://doi.org/10.33910/2687-153X-2022-3-4-159-166Ключевые слова:
тонкие сегнетоэлектрические пленки, цирконат-титанат свинца, морфотропная фазовая граница, механические напряжения, внутреннее электрическое поле, самополяризация, эффект ГорскогоАннотация
Рассмотрено влияние линейных и изгибных напряжений на величину внутреннего поля и самополяризации в тонких пленках цирконата-титаната свинца (PZT), сформированных методом высокочастотного магнетронного распыления на подложках кремния и ситалла СТ-50. Состав тонких пленок соответствовал области морфотропной фазовой границы. Предположено, что изгибные напряжения в биморфных структурах «тонкая пленка PZT — подложка» приводят к появлению внутреннего электрического поля, вызванного диффузией заряженных кислородных вакансий (эффект Горского в сегнетоэлектриках).
Библиографические ссылки
Afanasjev, V. P., Petrov, A. A., Pronin, I. P. et al. (2001) Polarization and self-polarization in thin PbZr1 − xTixO3 (PZT) films. Journal of Physics: Condensed Matter, 13 (39), article8755. https://doi.org/10.1088/0953-8984/13/39/304 (In English)
Barbashov, V. I., Komysa, Yu. A. (2005) Mechanoelectric effect in solid electrolytes. Physics of the Solid State, 47 (2), 238–242. https://doi.org/10.1134/1.1866400 (In English)
Bruchhaus, R., Pitzer, D., Schreiter, M., Wersing, W. (1999) Optimized PZT thin films for pyroelectric IR detector arrays. Journal of Electroceramics, 3 (2), 151–162. https://doi.org/10.1023/A:1009995126986 (In English)
Bukharaev, A. A., Zvezdin, A. K., Pyatakov, A. P. et al. (2018) Straintronics: A new trend in micro- and nanoelectronics and materials science. Physics-Uspekhi, 61 (12), article 1175. https://doi.org/10.3367/UFNe.2018.01.038279 (In English)
Bursian, E. V., Zaikovskii, O. I., Makarov, K. V. (1969) Polyarizatsiya segnetoelektricheskoj plastiny izgibom [Polarization of a ferroelectric plate by bending]. Izvestiya akademii nauk SSSR — Bulletin of the Academy of Sciences of the USSR, 33 (7), 1098–1101. (In Russian)
Delimova, L. A., Zaitseva, N. V., Ratnikov, V. V. et al. (2021) Comparison of characteristics of thin PZT films on Si-on-Sapphire and Si Substrates. Physics of the Solid State, 63 (8), 1145–1152. https://doi.org/10.1134/S1063783421080060 (In English)
Eerenstein, W., Mathur, N. D., Scott, J. F. (2006) Multiferroic and magnetoelectric materials. Nature, 442, 759–765. https://doi.org/10.1038/nature05023 (In English)
Ehre, D., Lyahovitskaya, V., Tagantsev, A., Lubomirsky, I. (2007) Amorphous piezo- and pyroelectric phases of BaZrO3 and SrTiO3. Advanced Materials, 19 (11), 1515–1517. https://doi.org/10.1002/adma.200602149 (In English)
Garten, L. M., Trolier-McKinstry, S. (2015) Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate. Journal of Applied Physics, 117 (9), article 094102. https://doi.org/10.1063/1.4913858 (In English)
Gorsky, W. S. (1935) Theorie des elastischen Nachwirkung in ungeordneten Mischkristallen (elastische Nrchwirkung zweiter Art) [Theory of elastic after-effects in disordered mixed crystals (elastic after-effects of the second kind)]. Physikalische Zeitschrift der Sowjetunion, 8, 457–471. (In German)
Gruverman, A., Rodriguez, B. J., Kingon, A. I., Nemanich, R. J. (2003) Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors. Applied Physics Letters, 83 (4), article 728. https://doi.org/10.1063/1.1593830 (In English)
Holzlechner, G., Kastner, D., Slouka, C. et al. (2014) Oxygen vacancy redistribution in PbZrxTi1 − xO3 (PZT) under the influence of an electric field. Solid State Ionics, 262, 625–629. https://doi.org/10.1016/j.ssi.2013.08.027 (In English)
Izyumskaya, N., Alivov, Y.-I., Cho, S.-J. et al. (2007) Processing, structure, properties, and applications of PZT thin films. Critical Reviews in Solid State and Materials Sciences, 32 (3-4), 111–202. https://doi.org/10.1080/10408430701707347 (In English)
Kang, M.-G., Jung, W.-S., Kang, Ch.-Y., Yoon, S.-J. (2016) Recent progress on PZT based piezoelectric energy harvesting technologies. Actuators, 5 (1), article 5. https://doi.org/10.3390/act5010005 (In English)
Kholkin, A. L., Brooks, K. G., Taylor, D. V. et al. (1998) Self-polarization effect in Pb(Zr,Ti)O3 thin films. Integrated Ferroelectrics, 22 (1-4), 525–533. https://doi.org/10.1080/10584589808208071 (In English)
Kosevich, A. M. (1975) How a crystal flows. Soviet Physics Uspekhi, 17 (6), 920–930. https://doi.org/10.1070/PU1975v017n06ABEH004405 (In English)
Ma, Y., Son, J., Wang, X. et al. (2021) Synthesis, microstructure and properties of magnetron sputtered lead zirconate titanate (PZT) thin film coatings. Coatings, 11 (8), article 944. https://doi.org/10.3390/coatings11080944 (In English)
Muralt, P. (2001) Micromachined infrared detectors based on pyroelectric thin films. Reports on Progress in Physics, 64 (10), 1339–1388. https://doi.org/10.1088/0034-4885/64/10/203 (In English)
Muralt, P. (2008) Recent progress in materials issues for piezoelectric MEMS. Journal of American Ceramic Society, 91 (5), 1385–1396. https://doi.org/10.1111/j.1551-2916.2008.02421.x (In English)
Ogawa, T., Senda, A., Kasanami, T. (1991) Controlling the crystal orientations of lead titanate thin films. Japanese Journal of Applied Physics, 30 (9S), article 2145. https://doi.org/10.1143/JJAP.30.2145 (In English)
Okamura, S., Miyata, S., Mizutani, Y. et al. (1999) Conspicuous voltage shift of D-E hysteresis loop and asymmetric depolarization in Pb-based ferroelectric thin films. Japanese Journal of Applied Physics, 38 (9S), article 5364. https://doi.org/10.1143/JJAP.38.5364 (In English)
Polla, D. L. (1995) Microelectromechanical systems based on ferroelectric thin films. Microelectronic Engineering, 29 (1-4), 51–58. https://doi.org/10.1016/0167-9317(95)00114-X (In English)
Pronin, I. P., Kaptelov, E. Yu., Gol’tsev, A. V., Afanas’ev, V. P. (2003) The effect of stresses on self-polarization of thin ferroelectric films. Physics of the Solid State, 45 (9), 1768–1773. https://doi.org/10.1134/1.1611249 (In English)
Pronin, I. P., Kaptelov, E. Yu., Tarakanov, E. A., Afanas’ev, V. P. (2002a) Effect of annealing on the self-poled state in thin ferroelectric films. Physics of the Solid State, 44 (9), 1736–1740. https://doi.org/10.1134/1.1507258 (In English)
Pronin, I. P., Kaptelov, E. Yu., Tarakanov, E. A. et al. (2002b) Self-polarization and migratory polarization in thin lead zirconate-titanate films. Physics of the Solid State, 44 (4), 769–773. https://doi.org/10.1134/1.1470574 (In English)
Pronin, I. P., Kukushkin, S. A., Spirin, V. V. et al. (2017) Formation mechanisms and the orientation of self-polarization in PZT polycrystalline thin films. Materials Physics and Mechanics, 30 (1), 20–34. (In English)
Pronin, V. P., Senkevich, S. V., Kaptelov, E. Yu., Pronin, I. P. (2010) Features of the formation of a perovskite phase in thin polycrystalline Pb(Zr,Ti)O3 Films. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 4 (5), 703–708. https://doi.org/10.1134/S1027451010050010 (In English)
Song, L., Glinsek, S., Defay, E. (2021) Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Applied Physics Reviews, 8 (4), article 041315. https://doi.org/10.1063/5.0054004 (In English)
Sviridov, E., Sem, I., Alyoshin, V. et al. (1994) Ferroelectric film self-polarization. MRS Online Proceedings Library, 361, 141–146. https://doi.org/10.1557/PROC-361-141 (In English)
Yudin, P. V., Tagantsev, A. K. (2013) Fundamentals of flexoelectricity in solids. Nanotechnology, 24 (43), article 432001. https://doi.org/10.1088/0957-4484/24/43/432001 (In English)
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2022 Алсу Равилевна Валеева, Евгений Юрьевич Каптелов, Игорь Петрович Пронин, Станислав Викторович Сенкевич, Владимир Петрович Пронин
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.
Автор предоставляет материалы на условиях публичной оферты и лицензии CC BY-NC 4.0. Эта лицензия позволяет неограниченному кругу лиц копировать и распространять материал на любом носителе и в любом формате, но с обязательным указанием авторства и только в некоммерческих целях. После публикации все статьи находятся в открытом доступе.
Авторы сохраняют авторские права на статью и могут использовать материалы опубликованной статьи при подготовке других публикаций, а также пользоваться печатными или электронными копиями статьи в научных, образовательных и иных целях. Право на номер журнала как составное произведение принадлежит издателю.