Mechanical stresses in lead zirconate titanate thin films formed on substrates differing in temperature coefficients of linear expansion
DOI:
https://doi.org/10.33910/2687-153X-2022-3-4-159-166Keywords:
Thin ferroelectric films, lead zirconate titanate, morphotropic phase boundary, mechanical stresses, internal electric field, self-polarization, Gorsky effectAbstract
The article considers the influence of linear and bending stresses on the magnitude of the internal field and self-polarisation in thin lead zirconate titanate (PZT) films formed on silicon and glass-ceramic ST-50 substrates by radio-frequency magnetron sputtering. PZT composition corresponded to the region of the morphotropic phase boundary. It is assumed that bending stresses in “thin PZT film-substrate” bimorph structures lead to the appearance of an internal electric field caused by the diffusion of charged oxygen vacancies (Gorsky effect in ferroelectrics).
References
Afanasjev, V. P., Petrov, A. A., Pronin, I. P. et al. (2001) Polarization and self-polarization in thin PbZr1 − xTixO3 (PZT) films. Journal of Physics: Condensed Matter, 13 (39), article8755. https://doi.org/10.1088/0953-8984/13/39/304 (In English)
Barbashov, V. I., Komysa, Yu. A. (2005) Mechanoelectric effect in solid electrolytes. Physics of the Solid State, 47 (2), 238–242. https://doi.org/10.1134/1.1866400 (In English)
Bruchhaus, R., Pitzer, D., Schreiter, M., Wersing, W. (1999) Optimized PZT thin films for pyroelectric IR detector arrays. Journal of Electroceramics, 3 (2), 151–162. https://doi.org/10.1023/A:1009995126986 (In English)
Bukharaev, A. A., Zvezdin, A. K., Pyatakov, A. P. et al. (2018) Straintronics: A new trend in micro- and nanoelectronics and materials science. Physics-Uspekhi, 61 (12), article 1175. https://doi.org/10.3367/UFNe.2018.01.038279 (In English)
Bursian, E. V., Zaikovskii, O. I., Makarov, K. V. (1969) Polyarizatsiya segnetoelektricheskoj plastiny izgibom [Polarization of a ferroelectric plate by bending]. Izvestiya akademii nauk SSSR — Bulletin of the Academy of Sciences of the USSR, 33 (7), 1098–1101. (In Russian)
Delimova, L. A., Zaitseva, N. V., Ratnikov, V. V. et al. (2021) Comparison of characteristics of thin PZT films on Si-on-Sapphire and Si Substrates. Physics of the Solid State, 63 (8), 1145–1152. https://doi.org/10.1134/S1063783421080060 (In English)
Eerenstein, W., Mathur, N. D., Scott, J. F. (2006) Multiferroic and magnetoelectric materials. Nature, 442, 759–765. https://doi.org/10.1038/nature05023 (In English)
Ehre, D., Lyahovitskaya, V., Tagantsev, A., Lubomirsky, I. (2007) Amorphous piezo- and pyroelectric phases of BaZrO3 and SrTiO3. Advanced Materials, 19 (11), 1515–1517. https://doi.org/10.1002/adma.200602149 (In English)
Garten, L. M., Trolier-McKinstry, S. (2015) Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate. Journal of Applied Physics, 117 (9), article 094102. https://doi.org/10.1063/1.4913858 (In English)
Gorsky, W. S. (1935) Theorie des elastischen Nachwirkung in ungeordneten Mischkristallen (elastische Nrchwirkung zweiter Art) [Theory of elastic after-effects in disordered mixed crystals (elastic after-effects of the second kind)]. Physikalische Zeitschrift der Sowjetunion, 8, 457–471. (In German)
Gruverman, A., Rodriguez, B. J., Kingon, A. I., Nemanich, R. J. (2003) Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors. Applied Physics Letters, 83 (4), article 728. https://doi.org/10.1063/1.1593830 (In English)
Holzlechner, G., Kastner, D., Slouka, C. et al. (2014) Oxygen vacancy redistribution in PbZrxTi1 − xO3 (PZT) under the influence of an electric field. Solid State Ionics, 262, 625–629. https://doi.org/10.1016/j.ssi.2013.08.027 (In English)
Izyumskaya, N., Alivov, Y.-I., Cho, S.-J. et al. (2007) Processing, structure, properties, and applications of PZT thin films. Critical Reviews in Solid State and Materials Sciences, 32 (3-4), 111–202. https://doi.org/10.1080/10408430701707347 (In English)
Kang, M.-G., Jung, W.-S., Kang, Ch.-Y., Yoon, S.-J. (2016) Recent progress on PZT based piezoelectric energy harvesting technologies. Actuators, 5 (1), article 5. https://doi.org/10.3390/act5010005 (In English)
Kholkin, A. L., Brooks, K. G., Taylor, D. V. et al. (1998) Self-polarization effect in Pb(Zr,Ti)O3 thin films. Integrated Ferroelectrics, 22 (1-4), 525–533. https://doi.org/10.1080/10584589808208071 (In English)
Kosevich, A. M. (1975) How a crystal flows. Soviet Physics Uspekhi, 17 (6), 920–930. https://doi.org/10.1070/PU1975v017n06ABEH004405 (In English)
Ma, Y., Son, J., Wang, X. et al. (2021) Synthesis, microstructure and properties of magnetron sputtered lead zirconate titanate (PZT) thin film coatings. Coatings, 11 (8), article 944. https://doi.org/10.3390/coatings11080944 (In English)
Muralt, P. (2001) Micromachined infrared detectors based on pyroelectric thin films. Reports on Progress in Physics, 64 (10), 1339–1388. https://doi.org/10.1088/0034-4885/64/10/203 (In English)
Muralt, P. (2008) Recent progress in materials issues for piezoelectric MEMS. Journal of American Ceramic Society, 91 (5), 1385–1396. https://doi.org/10.1111/j.1551-2916.2008.02421.x (In English)
Ogawa, T., Senda, A., Kasanami, T. (1991) Controlling the crystal orientations of lead titanate thin films. Japanese Journal of Applied Physics, 30 (9S), article 2145. https://doi.org/10.1143/JJAP.30.2145 (In English)
Okamura, S., Miyata, S., Mizutani, Y. et al. (1999) Conspicuous voltage shift of D-E hysteresis loop and asymmetric depolarization in Pb-based ferroelectric thin films. Japanese Journal of Applied Physics, 38 (9S), article 5364. https://doi.org/10.1143/JJAP.38.5364 (In English)
Polla, D. L. (1995) Microelectromechanical systems based on ferroelectric thin films. Microelectronic Engineering, 29 (1-4), 51–58. https://doi.org/10.1016/0167-9317(95)00114-X (In English)
Pronin, I. P., Kaptelov, E. Yu., Gol’tsev, A. V., Afanas’ev, V. P. (2003) The effect of stresses on self-polarization of thin ferroelectric films. Physics of the Solid State, 45 (9), 1768–1773. https://doi.org/10.1134/1.1611249 (In English)
Pronin, I. P., Kaptelov, E. Yu., Tarakanov, E. A., Afanas’ev, V. P. (2002a) Effect of annealing on the self-poled state in thin ferroelectric films. Physics of the Solid State, 44 (9), 1736–1740. https://doi.org/10.1134/1.1507258 (In English)
Pronin, I. P., Kaptelov, E. Yu., Tarakanov, E. A. et al. (2002b) Self-polarization and migratory polarization in thin lead zirconate-titanate films. Physics of the Solid State, 44 (4), 769–773. https://doi.org/10.1134/1.1470574 (In English)
Pronin, I. P., Kukushkin, S. A., Spirin, V. V. et al. (2017) Formation mechanisms and the orientation of self-polarization in PZT polycrystalline thin films. Materials Physics and Mechanics, 30 (1), 20–34. (In English)
Pronin, V. P., Senkevich, S. V., Kaptelov, E. Yu., Pronin, I. P. (2010) Features of the formation of a perovskite phase in thin polycrystalline Pb(Zr,Ti)O3 Films. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 4 (5), 703–708. https://doi.org/10.1134/S1027451010050010 (In English)
Song, L., Glinsek, S., Defay, E. (2021) Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Applied Physics Reviews, 8 (4), article 041315. https://doi.org/10.1063/5.0054004 (In English)
Sviridov, E., Sem, I., Alyoshin, V. et al. (1994) Ferroelectric film self-polarization. MRS Online Proceedings Library, 361, 141–146. https://doi.org/10.1557/PROC-361-141 (In English)
Yudin, P. V., Tagantsev, A. K. (2013) Fundamentals of flexoelectricity in solids. Nanotechnology, 24 (43), article 432001. https://doi.org/10.1088/0957-4484/24/43/432001 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Alsu R. Valeeva, Evgeny Yu. Kaptelov, Igor P. Pronin, Stanislav V. Senkevich, Vladimir P. Pronin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.