Пьезоэлектрические свойства сферолитовых тонких пленок цирконата-титаната свинца

Авторы

DOI:

https://doi.org/10.33910/2687-153X-2024-5-2-60-66

Ключевые слова:

силовая микроскопия пьезоэлектрического отклика, тонкие пленки цирконата-титаната свинца, радиально-лучистая сферолитовая микроструктура, механические напряжения, потенциал поверхности

Аннотация

Методом силовой микроскопии пьезоэлектрического отклика исследованы тонкие пленки цирконата-титаната свинца, отличающиеся сферолитовой радиально-лучистой микростуктурой, состав которых соответствует области морфотропной фазовой границы. Выявлены особенности вертикального и латерального пьезооткликов, а также потенциала поверхности (Кельвин-мода). Проводится сравнение свойств пьезоэлектрического отклика тонких пленок с особенностями радиально-лучистой микроструктуры и механических напряжений, образующихся в пленках в результате кристаллизации фазы перовскита из аморфной фазы.

Библиографические ссылки

Alkoy, E. M, Alkoy, S., Shiosaki, T. (2007) The effect of crystallographic orientation and solution aging on the electrical properties of sol-gel derived Pb(Zr0.45Ti0.55)O3 thin films. Ceramics International, 33 (8), 1455–1462. https://doi.org/10.1016/j.ceramint.2006.06.010 (In English)

Balke, N., Bdikin, I., Kalinin, S. V., Kholkin, A. L. (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future. Journal of the American Ceramic Society, 92 (8), 1629–1647. https://doi.org/10.1111/j.1551-2916.2009.03240.x (In English)

Cox, D. E., Noheda, B., Shirane, G. (2005) Low-temperature phases in PbZr0.52Ti0.48O3: A neutron powder diffraction study. Physical Review B, 71 (13), article 134110. https://doi.org/10.1103/PhysRevB.71.134110 (In English)

Izyumskaya, N., Alivov, Y.-I., Cho, S.-J. et al. (2007) Processing, structure, properties, and applications of PZT thin films. Critical Reviews in Solid State and Materials Sciences, 32 (3–4), 111–202. https://doi.org/10.1080/10408430701707347 (In English)

Kiselev, D. A., Staritsyn, M. V., Senkevich, S. V. et al. (2023) Radially oriented lateral self-polarization in spherulitic lead zirconate titanate thin films. Technical Physics Letters, 49 (11), 45–47. (In English)

Kolosov, V. Yu., Tholen, A. R. (2000) Transmission electron microscopy studies of the specific structure of crystals formed by phase transition in iron oxide amorphous films. Acta Materialia, 48 (8), 1829–1840. https://doi.org/10.1016/S1359-6454(99)00471-1 (In English)

Kolosov, V. Yu., Veretennikov, L. M., Startseva, Yu. B., Schvamm, C. L. (2005) Electron microscopy study of a chalcogenide-based polycrystalline condensate microstructure: The effect of composition and thickness on internal lattice bending. Semiconductors, 39 (8), 955–959. https://doi.org/10.1134/1.2010692 (In English)

Kooi, B. J., De Hosson, J. Th. M. (2004) On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. Journal of Applied Physics, 95 (9), 4714–4721. https://doi.org/10.1063/1.1690112 (In English)

Lutjes, N. R., Zhou, S., Antoja-Lleonart, J. et al. (2021) Spherulitic and rotational crystal growth of Quartz thin films. Scientific Reports, 11 (1), article 14888. https://doi.org/10.1038/s41598-021-94147-y (In English)

Musterman, E. J., Dierolf, V., Jain, H. (2022) Curved lattices of crystals formed in glass. International Journal of Applied Glass Science, 13 (3), 402–419. https://doi.org/10.1111/ijag.16574 (In English)

Pronin, I. P., Kaptelov, E. Yu., Gol’tsev, A. V., Afanasjev, V. P. (2003) The effect of stresses on self-polarization of thin ferroelectric films. Physics of the Solid State, 45 (9), 1768–1773. https://doi.org/10.1134/1.1611249 (In English)

Pronin, V. P., Dolgintsev, D. M., Osipov, V. V. et al. (2018) The change in the phase state of thin PZT layers in the region of the morphotropic phase boundary obtained by the RF magnetron sputtering with varying targetsubstrate distance. IOP Conference Series: Materials Science and Engineering, 387, article 012063. https://doi.org/10.1088/1757-899X/387/1/012063 (In English)

Pronin, V. P., Senkevich, S. V., Elshin, A. S. et al. (2023) Spherulitic microstructure of thin PZT films. Physics of Complex Systems, 4 (2), 81–87. https://doi.org/10.33910/2687-153X-2023-4-2-81-87 (In English)

Shtukenberg, A. G., Punin, Yu. O., Gujra,l A., Kahr, B. (2014) Growth actuated bending and twisting of single crystals. Angewandte Chemie International Edition, 53 (3), 672–699. https://doi.org/10.1002/anie.201301223 (In English)

Shtukenberg, A. G., Punin, Yu. O., Gunn, E., Kahr, B. (2012) Spherulites. Chemical Reviews, 112 (3), 1805–1838. https://doi.org/10.1021/cr200297f (In English)

Song, L., Glinsek, S., Defay, E. (2021) Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Applied Physics Reviews, 8 (4), article 041315. https://doi.org/10.1063/5.0054004 (In English)

Spierings, G. A. C. M., van Zon, J. B. A., Larsen, P. K., Klee, M. (1993) Influence of platinum-based electrodes on the microstructure of sol - gel and MOD prepared lead zirconate titanate films. Integrated Ferroelectrics, 3 (3), 283–292. https://doi.org/10.1080/10584589308216719 (In English)

Staritsyn, M. V., Fedoseev, M. L., Kiselev, D. A. et al. (2023a) Ferroelectric properties of lead zirconate titanate thin films obtained by RF magnetron sputtering near the morphotropic phase boundary. Physics of the Solid State, 65 (2), 290–295. https://doi.org/10.21883/PSS.2023.02.55414.531 (In English)

Staritsyn, M. V., Pronin, V. P., Khinich, I. I. et al. (2023b) Microstructure of spherulitic lead zirconate titanate thin films. Physics of the Solid State, 65 (8), 1312–1318. https://doi.org/10.61011/PSS.2023.08.56577.140 (In English)

Zhigalina, O. M., Khmelenin, D. N., Valieva, Yu. A. et al. (2018) Structural features of PLZT films. Crystallography Reports, 63 (4), 646–655. https://doi.org/10.1134/S1063774518040314 (In English)

Опубликован

2024-06-24

Выпуск

Раздел

Condensed Matter Physics