Формирование нанопленок MoTe2 на металлических подложках

Авторы

  • Павел Николаевич Якушев Физико-технический институт имени А. Ф. Иоффе РАН https://orcid.org/0000-0002-9947-1245
  • Владимир Абрамович Берштейн Физико-технический институт имени А. Ф. Иоффе РАН https://orcid.org/0000-0003-4524-8766
  • Александр Владимирович Колобов Российский государственный педагогический университет им. А. И. Герцена https://orcid.org/0000-0002-8125-1172

DOI:

https://doi.org/10.33910/2687-153X-2024-5-4-205-214

Ключевые слова:

дихалькогениды переходных металлов, твердофазная кристаллизация, дифференциальная сканирующая калориметрия, нанопленки, двумерные полупроводники

Аннотация

Дихалькогениды переходных металлов являются одними из наиболее изучаемых двумерных полупроводников для использования в электронике, оптоэлектронике и спинтронике, а также в устройствах памяти. Одним из простых коммерчески привлекательных методов получения тонких кристаллических пленок является твердофазная кристаллизация из аморфной фазы. В данной работе, используя измерения дифференциальной сканирующей калориметрии (DSC), мы продемонстрировали, что нанослои MoTe2, осажденные на различные подложки (Ta, Al, W, Mo), демонстрируют заметно отличающееся поведение при кристаллизации. На основании полученных результатов в работе предполагается, что эти различия связаны с разным химическим сродством компонентов пленки к материалу подложки, и предлагается схема этого сложного процесса кристаллизации.

Библиографические ссылки

Bailey, L. G. (1966) Preparation and properties of silicon telluride. Journal of Physics and Chemistry of Solids, 27 (10), 1593–1598. https://doi.org/10.1016/0022-3697(66)90237-X (In English)

Boller, H., Nowotny, H. (1964) Kristallchemische Untersuchungen in Systemen (Ti, Nb, Ta, Mo, W)−(As, Sb). Monatshefte fur Chemie und Verwandte Teile Anderer Wissenschaften, 95, 1272–1282. https://doi.org/10.1007/BF00904725 (In English)

Chernikov, A., Berkelbach, T. C., Hill, H. M. et al. (2014) Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Physical Review Letters, 113, article 076802. https://doi.org/10.1103/PhysRevLett.113.076802 (In English)

Cho, S., Kim, S., Kim, J. H. et al. (2015) Phase patterning for ohmic homojunction contact in MoTe2. Science, 349 (6248), 625–628. https://doi.org/10.1126/science.aab3175 (In English)

Demirci, S., Avazlı, N., Durgun, E., Cahangirov, S. (2017) Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B, 95, article 115409. https://doi.org/10.1103/PhysRevB.95.115409 (In English)

Duerloo, K.-A. N., Li, Y., Reed, E. J. (2014) Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nature Communications, 5, article 4214. https://doi.org/10.1038/ncomms5214 (In English)

Fukuda, T., Kaburauchi, R., Saito, Y. et al. (2022) Photo-induced tellurium segregation in MoTe2. physica status solidi (RRL) — Rapid Research Letters, 16 (9), article 2100633. https://doi.org/10.1002/pssr.202100633 (In English)

Hatayama, S., Saito, Y., Makino, K. et al. (2022) Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: Amorphous, 1T′ and 2H phases. Journal of Materials Chemistry C, 10 (29), 10627–10635. https://doi.org/10.1039/D2TC01281B (In English)

Huang, H. H., Fan, X., Singh, D. J. et al. (2016) Controlling phase transition for single-layer MTe2 (M = Mo and W): Modulation of the potential barrier under strain. Physical Chemistry Chemical Physics, 18 (5), 4086–4094. https://doi.org/10.1039/C5CP06706E (In English)

Huang, J.-H., Hsu, H.-H., Wang, D. et al. (2019) Polymorphism control of layered MoTe2 through two-dimensional solid-phase crystallization. Scientific Reports, 9, article 8810. https://doi.org/10.1038/s41598-019-45142-x (In English)

Huang, J.-H., Deng, K.-Y., Liu, P.-S. et al. (2017) Large-area 2D layered MoTe2 by physical vapor deposition and solid-phase crystallization in a tellurium-free atmosphere. Advanced Materials Interfaces, 4 (17), article 1700157. http://dx.doi.org/10.1002/admi.201700157 (In English)

Knop, O., Haraldsen, H. (1956) A note on the system wolfram-tellurium. Canadian Journal of Chemistry, 34 (8), 1142–1145. https://doi.org/10.1139/v56-149

Kolobov, A. V., Tominaga, J. (2016) Two-dimensional transition-metal dichalcogenides. Springer Series in Materials Science. Vol. 239. Cham: Springer Publ., 538 p. https://doi.org/10.1007/978-3-319-31450-1 (In English)

Kolobov, A. V., Fons, P., Tominaga, J. (2016) Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2. Physical Review B, 94 (9), article 094114. https://doi.org/10.1103/PhysRevB.94.094114 (In English)

Kolobov, A. V., Lyubin, V. M., Taguyrdzhanov, M. A. (1982) Effect of pressure on photoinduced changes in chalcogenide vitreous semiconductors. Solid State Communications, 41 (6), 453–455. https://doi.org/10.1016/0038-1098(82)90523-3 (In English)

Krbal, M., Prokop, V., Kononov, A. A. et al. (2021) Amorphous-to-crystal transition in quasi-two-dimensional MoS2: Implications for 2D electronic devices. ACS Applied Nano Materials, 4 (9), 8834–8844. https://doi.org/10.1021/acsanm.1c01504 (In English)

Li, N., Wang, Q., Shen, C. et al. (2020) Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nature Electronics, 3, 711–717. https://doi.org/10.1038/s41928-020-00475-8 (In English)

Li, Y., Duerloo, K.-A. N., Wauson, K., Reed, E. J. (2016) Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nature Communications, 7, article 10671. https://doi.org/10.1038/ncomms10671 (In English)

Lin, Y.-F., Xu, Y., Wang, S.-T. et al. (2014) Ambipolar MoTe2 transistors and their applications in logic circuits. Advanced Materials, 26 (20), 3263–3269. https://doi.org/10.1002/adma.201305845 (In English)

Liu, T., Liu, Z. (2018) 2D MoS2 nanostructures for biomedical applications. Advanced Healthcare Materials, 7 (8), article 1701158. https://doi.org/10.1002/adhm.201701158 (In English)

Mak, K. F., Lee, C., Hone, J. et al. (2010) Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105 (13), article 136805. https://doi.org/10.1103/PhysRevLett.105.136805 (In English)

Park, J. C., Yun, S. J., Kim, H. et al. (2015) Phase-engineered synthesis of centimeter-scale 1T′-and 2H-molybdenum ditelluride thin films. ACS Nano, 9 (6), 6548–6554. https://doi.org/10.1021/acsnano.5b02511 (In English)

Raoux, S., Jordan-Sweet, J. L., Kellock, A. J. (2008) Crystallization properties of ultrathin phase change films. Journal of Applied Physics, 103 (11), article 114310. https://doi.org/10.1063/1.2938076 (In English)

Saito, Y., Fons, P., Kolobov, A. V., Tominaga, J. (2015) Self-organized van der Waals epitaxy of layered chalcogenide structures. physica status solidi (b), 252 (10), 2151–2158. https://doi.org/10.1002/pssb.201552335 (In English)

Saito, Y., Hatayama, S., Shuang, Y. et al. (2021) Dimensional transformation of chemical bonding during crystallization in a layered chalcogenide material. Scientific Reports, 11 (1), article 4782. https://doi.org/10.1038/s41598-020-80301-5 (In English)

Sarkar, D., Xie, X., Liu, W. et al. (2015) A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 526 (7571), 91–95. https://doi.org/10.1038/nature15387 (In English)

Simpson, R. E., Krbal, M., Fons, P. et al. (2010) Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Letters, 10 (2), 414–419. https://doi.org/10.1021/nl902777z (In English)

Song, S., Keum, D. H., Cho, S. et al. (2016) Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Letters, 16 (1), 188–193. https://doi.org/10.1021/acs.nanolett.5b03481 (In English)

Suzuki, R., Sakano, M., Zhang, Y. J. et al. (2014) Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nature Nanotechnology, 9 (8), 611–617. https://doi.org/10.1038/nnano.2014.148 (In English)

Tang, J., Wang, Q., Tian, J. et al. (2023) Low power flexible monolayer MoS2 integrated circuits. Nature Communications, 14 (1), article 3633. https://doi.org/10.1038/s41467-023-39390-9 (In English)

Thurmond, C. D., Kowalchik, M. (1960) Germanium and silicon liquidus curves. The Bell System Technical Journal, 39 (1), 169–204. https://doi.org/10.1002/j.1538-7305.1960.tb03927.x (In English)

Ueno, K., Fukushima, K. (2015) Changes in structure and chemical composition of α-MoTe2 and β-MoTe2 during heating in vacuum conditions. Applied Physics Express, 8 (9), article 095201. https://doi.org/10.7567/APEX.8.095201 (In English)

Wei, W., Dai, Y., Huang, B. (2017) Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides. Physical Chemistry Chemical Physics, 19 (1), 663–672. https://doi.org/10.1039/C6CP07823K (In English)

Xiao, D., Liu, G.-B., Feng, W. et al. (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 108 (19), article 196802. https://doi.org/10.1103/PhysRevLett.108.196802 (In English)

Yin, L., Zhan, X., Xu, K. et al. (2016) Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Applied Physics Letters, 108 (4), article 043503. https://doi.org/10.1063/1.4941001 (In English)

Yoo, Y., DeGregorio, Z. P., Su, Y. et al. (2017) In-plane 2H-1T′ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Advanced Materials, 29 (16), article 1605461. https://doi.org/10.1002/adma.201605461 (In English)

Zachariasen, W. H. (1932) The atomic arrangement in glass. Journal of the American Chemical Society, 54 (10), 3841–3851. https://doi.org/10.1021/ja01349a006 (In English)

Zhao, C., Batiz, H., Yasar, B. et al. (2021) Tellurium single-crystal arrays by low-temperature evaporation and crystallization. Advanced Materials, 33 (37), article 2100860. https://doi.org/10.1002/adma.202100860 (In English)

Zhou, L., Xu, K., Zubair, A. et al. (2015) Large-area synthesis of high-quality uniform few-layer MoTe2. Journal of the American Chemical Society, 137 (37), 11892–11895. https://doi.org/10.1021/jacs.5b07452 (In English)

Zhou, L., Zubair, A., Wang, Z. et al. (2016) Synthesis of high-quality large-area homogenous 1T′ MoTe2 from chemical vapor deposition. Advanced Materials, 28 (43), 9526–9531. https://doi.org/10.1002/adma.201602687 (In English)

Загрузки

Опубликован

2024-12-20

Выпуск

Раздел

Physics of Semiconductors