The formation of MoTe2 nanofilms on metal substrates
DOI:
https://doi.org/10.33910/2687-153X-2024-5-4-205-214Keywords:
transition-metal dichalcogenides, solid-state crystallization, differential scanning calorimetry, nanofilms, two-dimensional semiconductorsAbstract
Transition-metal dichalcogenides are among most studied two-dimensional semiconductors for applications in electronics, optoelectronics, spintronics, and memory devices. One of the simple commercially friendly methods to fabricate thin crystalline films is solid-state crystallization from the amorphous phase. In this work, using differential scanning calorimetry (DSC) measurements, we demonstrate that MoTe2 nanolayers deposited on different substrates (Ta, Al, W, Mo) manifest distinctly different crystallization behavior. We argue that these differences are associated with different chemical affinity of the film constituents towards the substrate material and propose a scheme of this complex crystallization process.
References
Bailey, L. G. (1966) Preparation and properties of silicon telluride. Journal of Physics and Chemistry of Solids, 27 (10), 1593–1598. https://doi.org/10.1016/0022-3697(66)90237-X (In English)
Boller, H., Nowotny, H. (1964) Kristallchemische Untersuchungen in Systemen (Ti, Nb, Ta, Mo, W)−(As, Sb). Monatshefte fur Chemie und Verwandte Teile Anderer Wissenschaften, 95, 1272–1282. https://doi.org/10.1007/BF00904725 (In English)
Chernikov, A., Berkelbach, T. C., Hill, H. M. et al. (2014) Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Physical Review Letters, 113, article 076802. https://doi.org/10.1103/PhysRevLett.113.076802 (In English)
Cho, S., Kim, S., Kim, J. H. et al. (2015) Phase patterning for ohmic homojunction contact in MoTe2. Science, 349 (6248), 625–628. https://doi.org/10.1126/science.aab3175 (In English)
Demirci, S., Avazlı, N., Durgun, E., Cahangirov, S. (2017) Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B, 95, article 115409. https://doi.org/10.1103/PhysRevB.95.115409 (In English)
Duerloo, K.-A. N., Li, Y., Reed, E. J. (2014) Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nature Communications, 5, article 4214. https://doi.org/10.1038/ncomms5214 (In English)
Fukuda, T., Kaburauchi, R., Saito, Y. et al. (2022) Photo-induced tellurium segregation in MoTe2. physica status solidi (RRL) — Rapid Research Letters, 16 (9), article 2100633. https://doi.org/10.1002/pssr.202100633 (In English)
Hatayama, S., Saito, Y., Makino, K. et al. (2022) Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: Amorphous, 1T′ and 2H phases. Journal of Materials Chemistry C, 10 (29), 10627–10635. https://doi.org/10.1039/D2TC01281B (In English)
Huang, H. H., Fan, X., Singh, D. J. et al. (2016) Controlling phase transition for single-layer MTe2 (M = Mo and W): Modulation of the potential barrier under strain. Physical Chemistry Chemical Physics, 18 (5), 4086–4094. https://doi.org/10.1039/C5CP06706E (In English)
Huang, J.-H., Hsu, H.-H., Wang, D. et al. (2019) Polymorphism control of layered MoTe2 through two-dimensional solid-phase crystallization. Scientific Reports, 9, article 8810. https://doi.org/10.1038/s41598-019-45142-x (In English)
Huang, J.-H., Deng, K.-Y., Liu, P.-S. et al. (2017) Large-area 2D layered MoTe2 by physical vapor deposition and solid-phase crystallization in a tellurium-free atmosphere. Advanced Materials Interfaces, 4 (17), article 1700157. http://dx.doi.org/10.1002/admi.201700157 (In English)
Knop, O., Haraldsen, H. (1956) A note on the system wolfram-tellurium. Canadian Journal of Chemistry, 34 (8), 1142–1145. https://doi.org/10.1139/v56-149
Kolobov, A. V., Tominaga, J. (2016) Two-dimensional transition-metal dichalcogenides. Springer Series in Materials Science. Vol. 239. Cham: Springer Publ., 538 p. https://doi.org/10.1007/978-3-319-31450-1 (In English)
Kolobov, A. V., Fons, P., Tominaga, J. (2016) Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2. Physical Review B, 94 (9), article 094114. https://doi.org/10.1103/PhysRevB.94.094114 (In English)
Kolobov, A. V., Lyubin, V. M., Taguyrdzhanov, M. A. (1982) Effect of pressure on photoinduced changes in chalcogenide vitreous semiconductors. Solid State Communications, 41 (6), 453–455. https://doi.org/10.1016/0038-1098(82)90523-3 (In English)
Krbal, M., Prokop, V., Kononov, A. A. et al. (2021) Amorphous-to-crystal transition in quasi-two-dimensional MoS2: Implications for 2D electronic devices. ACS Applied Nano Materials, 4 (9), 8834–8844. https://doi.org/10.1021/acsanm.1c01504 (In English)
Li, N., Wang, Q., Shen, C. et al. (2020) Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nature Electronics, 3, 711–717. https://doi.org/10.1038/s41928-020-00475-8 (In English)
Li, Y., Duerloo, K.-A. N., Wauson, K., Reed, E. J. (2016) Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nature Communications, 7, article 10671. https://doi.org/10.1038/ncomms10671 (In English)
Lin, Y.-F., Xu, Y., Wang, S.-T. et al. (2014) Ambipolar MoTe2 transistors and their applications in logic circuits. Advanced Materials, 26 (20), 3263–3269. https://doi.org/10.1002/adma.201305845 (In English)
Liu, T., Liu, Z. (2018) 2D MoS2 nanostructures for biomedical applications. Advanced Healthcare Materials, 7 (8), article 1701158. https://doi.org/10.1002/adhm.201701158 (In English)
Mak, K. F., Lee, C., Hone, J. et al. (2010) Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105 (13), article 136805. https://doi.org/10.1103/PhysRevLett.105.136805 (In English)
Park, J. C., Yun, S. J., Kim, H. et al. (2015) Phase-engineered synthesis of centimeter-scale 1T′-and 2H-molybdenum ditelluride thin films. ACS Nano, 9 (6), 6548–6554. https://doi.org/10.1021/acsnano.5b02511 (In English)
Raoux, S., Jordan-Sweet, J. L., Kellock, A. J. (2008) Crystallization properties of ultrathin phase change films. Journal of Applied Physics, 103 (11), article 114310. https://doi.org/10.1063/1.2938076 (In English)
Saito, Y., Fons, P., Kolobov, A. V., Tominaga, J. (2015) Self-organized van der Waals epitaxy of layered chalcogenide structures. physica status solidi (b), 252 (10), 2151–2158. https://doi.org/10.1002/pssb.201552335 (In English)
Saito, Y., Hatayama, S., Shuang, Y. et al. (2021) Dimensional transformation of chemical bonding during crystallization in a layered chalcogenide material. Scientific Reports, 11 (1), article 4782. https://doi.org/10.1038/s41598-020-80301-5 (In English)
Sarkar, D., Xie, X., Liu, W. et al. (2015) A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 526 (7571), 91–95. https://doi.org/10.1038/nature15387 (In English)
Simpson, R. E., Krbal, M., Fons, P. et al. (2010) Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Letters, 10 (2), 414–419. https://doi.org/10.1021/nl902777z (In English)
Song, S., Keum, D. H., Cho, S. et al. (2016) Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Letters, 16 (1), 188–193. https://doi.org/10.1021/acs.nanolett.5b03481 (In English)
Suzuki, R., Sakano, M., Zhang, Y. J. et al. (2014) Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nature Nanotechnology, 9 (8), 611–617. https://doi.org/10.1038/nnano.2014.148 (In English)
Tang, J., Wang, Q., Tian, J. et al. (2023) Low power flexible monolayer MoS2 integrated circuits. Nature Communications, 14 (1), article 3633. https://doi.org/10.1038/s41467-023-39390-9 (In English)
Thurmond, C. D., Kowalchik, M. (1960) Germanium and silicon liquidus curves. The Bell System Technical Journal, 39 (1), 169–204. https://doi.org/10.1002/j.1538-7305.1960.tb03927.x (In English)
Ueno, K., Fukushima, K. (2015) Changes in structure and chemical composition of α-MoTe2 and β-MoTe2 during heating in vacuum conditions. Applied Physics Express, 8 (9), article 095201. https://doi.org/10.7567/APEX.8.095201 (In English)
Wei, W., Dai, Y., Huang, B. (2017) Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides. Physical Chemistry Chemical Physics, 19 (1), 663–672. https://doi.org/10.1039/C6CP07823K (In English)
Xiao, D., Liu, G.-B., Feng, W. et al. (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 108 (19), article 196802. https://doi.org/10.1103/PhysRevLett.108.196802 (In English)
Yin, L., Zhan, X., Xu, K. et al. (2016) Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Applied Physics Letters, 108 (4), article 043503. https://doi.org/10.1063/1.4941001 (In English)
Yoo, Y., DeGregorio, Z. P., Su, Y. et al. (2017) In-plane 2H-1T′ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Advanced Materials, 29 (16), article 1605461. https://doi.org/10.1002/adma.201605461 (In English)
Zachariasen, W. H. (1932) The atomic arrangement in glass. Journal of the American Chemical Society, 54 (10), 3841–3851. https://doi.org/10.1021/ja01349a006 (In English)
Zhao, C., Batiz, H., Yasar, B. et al. (2021) Tellurium single-crystal arrays by low-temperature evaporation and crystallization. Advanced Materials, 33 (37), article 2100860. https://doi.org/10.1002/adma.202100860 (In English)
Zhou, L., Xu, K., Zubair, A. et al. (2015) Large-area synthesis of high-quality uniform few-layer MoTe2. Journal of the American Chemical Society, 137 (37), 11892–11895. https://doi.org/10.1021/jacs.5b07452 (In English)
Zhou, L., Zubair, A., Wang, Z. et al. (2016) Synthesis of high-quality large-area homogenous 1T′ MoTe2 from chemical vapor deposition. Advanced Materials, 28 (43), 9526–9531. https://doi.org/10.1002/adma.201602687 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Pavel N. Yakushev, Vladimir A. Bershtein, Alexandr V. Kolobov
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.