Microstructure and properties of polycrystalline PZT films obtained by RF magnetron sputtering with fine variation of the composition near morphotropic phase boundary





method of fine composition variation, PZT, thin films, morphotropic phase boundary, scanning electron microscopy


The article discusses the possibilities of fine composition variation of polycrystalline PZT films at the morphotropic phase boundary. The composition of thin films prepared by RF magnetron sputtering of a ceramic target of stoichiometric composition PbZr0.54Ti0.46O3 was varied by changing the distance from the target to the substrate in the range of 30–70 mm. This made it possible to change the composition by ~1.5%. The study focused on the dielectric properties of the formed self-polarized films. The study found that the resistance to external electric fields depends on the conditions of film preparation.


Afanasjev, V. P., Petrov, A. A., Pronin, I. P. et al. (2001) Polarization and self-polarization in thin PbZr1−xTixO3 (PZT) films. Journal of Physics Condensed Matter, 13 (39), article 8755. https://www.doi.org/10.1088/0953-8984/13/39/304 (In English)

Bruchhaus, R., Pitzer, D., Schreiter, M., Wersing, W. (1999) Optimized PZT thin films for pyroelectric IR detector arrays. Journal of Electroceramics, 3 (2), 151–162. https://doi.org/10.1023/A:1009995126986 (In English)

Calame, F., Muralt, P. (2007) Growth and properties of gradient free sol-gel lead zirconate titanate thin films. Applied Physics Letters, 90 (6), article 062907. https://doi.org/10.1063/1.2472529 (In English)

Eerenstein, W., Mathur, N. D., Scott, J. F. (2006) Multiferroic and magnetoelectric materials. Nature, 442 (7104), 759–765. https://doi.org/10.1038/nature05023 (In English)

Isupov, V. A. (1983) Some aspects of the physics of piezoelectric ceramics. Ferroelectrics, 46 (1), 217–225. https://doi.org/10.1080/00150198308225269 (In English)

Izyumskaya, N., Alivov, Y.-I., Cho, S.-J. et al. (2007) Processing, structure, properties, and applications of PZT thin films. Critical Reviews in Solid State and Materials Sciences, 32 (3-4), 111–202. https://doi.org/10.1080/10408430701707347 (In English)

Jaffe, B., Cook, W., Jaffe, H. (1971) Piezoelectric ceramics. London; New York: Academic Press, 328 p. (In English)

Kang, M.-G., Jung, W.-S., Kang, Ch.-Y., Yoon, S.-J. (2016) Recent progress on PZT based piezoelectric energy harvesting technologies. Actuators, 5 (1), article 5. https://doi.org/10.3390/act5010005 (In English)

Kholkin, A. L., Brooks, K. G., Taylor, D. V. et al. (1998) Self-polarization effect in Pb(Zr,Ti)O3 thin films. Integrated Ferroelectrics, 22 (1-4), 525–533. https://doi.org/10.1080/10584589808208071 (In English)

Muralt, P. (2008) Recent progress in materials issues for piezoelectric MEMS. Journal of the American Ceramic Society, 91 (5), 1385–1396. https://doi.org/10.1111/j.1551-2916.2008.02421.x (In English)

Noheda, B., Cox, D. E., Shirane, G. (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Applied Physics Letters, 74 (14), article 2059. https://doi.org/10.1063/1.123756 (In English)

Osipov, V. V., Kiselev, D. A., Kaptelov, E. Yu. et al. (2015) Internal field and self-polarization in lead zirconate titanate thin films. Physics of the Solid State, 57 (9), 1793–1799. http://dx.doi.org/10.1134/S1063783415090267 (In English)

Osipov, V. V., Kaptelov, E. Yu., Senkevich, S. V. et al. (2018) The study of self-poled PZT thin films under variation of lead excess. Ferroelectrics, 525 (1), 76–82. https://doi.org/10.1080/00150193.2018.1432931 (In English)

Polla, D. L. (1995) Microelectromechanical systems based on ferroelectric thin films. Microelectronic Engineering, 29 (1-4), 51–58. https://doi.org/10.1016/0167-9317(95)00114-X (In English)

Pronin, I. P., Kaptelov, E. Yu., Senkevich, S. V. et al. (2010) Crystallization of thin polycrystalline PZT films on Si/ SiO2/Pt substrates. Physics of the Solid State, 52 (1), 132–136. https://doi.org/10.1134/S1063783410010233 (In English)

Pronin, I. P., Kaptelov, E. Yu., Senkevich, S. V. et al. (2013) Vliyanie mezhfaznykh granits i nanovklyuchenij oksida svintsa na strukturnye i segnetoelektricheskie svojstva tonkikh plenok PZT [Influence of interphase boundaries and nanoinclusions of lead oxide on the structure and ferroelectric properties of PZT thin films]. Nanomaterialy i nanostruktury — XXI vek — Nanomaterials and Nanostructures XXI-Century, 4 (4), 21–29. (In Russian)

Pronin, I. P., Kukushkin, S. A., Spirin, V. V. et al. (2017) Formation mechanisms and the orientation of self-polarization in PZT polycrystalline thin films. Materials Physics and Mechanics, 30 (1), 20–34. (In English)

Scott, J. F. (1998) The physics of ferroelectric ceramic thin films for memory applications. Ferroelectrics Review, 1 (26), 1–129. (In English)

Scott, J. F. (2007) Application of modern ferroelectrics. Science, 315 (5814), 954–959. https://doi.org/10.1126/science.1129564 (In English)

Scott, J. F., Paz de Araujo, C. A. (1989) Ferroelectric memories. Science, 246 (4936), 1400–1405. https://doi.org/10.1126/science.246.4936.1400 (In English)

Sergienko, I. A., Gufan, Yu. M., Urazhdin, S. (2002) Phenomenological theory of phase transitions in highly piezoelectric perovskites. Physical Review B, 65 (14), article 144104. https://doi.org/10.1103/PhysRevB.65.144104 (In English)

Sviridov, E., Sem, I., Alyoshin, V. et al. (1994) Ferroelectric film self-polarization. MRS Online Proceedings Library, 361 (1), 141–146. https://doi.org/10.1557/PROC-361-141 (In English)

Volpyas, V. A., Tumarkin, A. V., Mikhailov, A. K. et al. (2016) Ion plasma deposition of oxide films with graded-stoichiometry composition: Experiment and simulation. Technical Physics Letters, 42 (7), 758–760. https://doi.org/10.1134/S1063785016070300 (In English)

Volpyas, V. A., Kozyrev, A. B. (2011) Thermalization of atomic particles in gases. Journal of Experimental and Theoretical Physics, 113 (1), article 172. https://doi.org/10.1134/S1063776111060227 (In English)

Vorotilov, K. A., Mukhortov, V. M., Sigov, A. S. (2011) Integrirovannye segnetoelektricheskie ustrojstva [Integrated ferroelectric devices]. Moscow: Energoatomizdat Publ., 175 p. (In Russian).

Vol’pyas, V. A., Kozyrev, A. B., Tumarkin, A. V. et al. (2019) The element composition variation in lead zirconate titanate upon the ion-plasma deposition: Experiment and simulation. Physics of the Solid State, 61 (7), 1223–1227. https://doi.org/10.1134/S1063783419070308 (In English)

Wada, S., Yako, K., Yokoo, K. et al. (2006) Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics, 334 (1), 17–27. https://doi.org/10.1080/00150190600689647 (In English)

Whatmore, R. W. (1999) Ferroelectrics, microsystems and nanotechnology. Ferroelectrics, 225 (1), 179–192. https://doi.org/10.1080/00150199908009126 (In English)

Willems, G. J., Wouters, D. J., Maes, H. E., Nouwen, R. (1997) Nucleation and orientation of sol-gel PZT films on Pt electrodes. Integrated Ferroelectrics, 15 (1-4), 19–28. https://doi.org/10.1080/10584589708015693 (In English)

Xu, Y. (1991) Ferroelectric materials and their applications. Amsterdam: North Holland Publ., 391 p. (In English)





Condensed Matter Physics