Микроструктура и свойства поликристаллических пленок ЦТС, полученных ВЧ-магнетронным распылением с тонким варьированием состава вблизи морфотропной фазовой границы

Авторы

DOI:

https://doi.org/10.33910/2687-153X-2021-2-3-101-109

Ключевые слова:

метод тонкого варьирования состава, ЦТС, тонкие пленки, морфотропная граница раздела фаз, сканирующая электронная микроскопия

Аннотация

Исследованы возможности тонкого варьирования состава поликристаллических пленок ЦТС, соответствующих морфотропной границе раздела фаз. Состав тонких пленок, полученных ВЧ-магнетронным напылением керамической мишени стехиометрического состава PbZr0.54Ti0.46O3, варьировали путем изменения расстояния от мишени до подложки в диапазоне 30–70 мм. Это позволило изменить состав на ~1,5%. Исследованы диэлектрические свойства сформированных самополяризованных пленок. Показано, что устойчивость к внешним электрическим полям зависит от условий их приготовления.

Библиографические ссылки

Afanasjev, V. P., Petrov, A. A., Pronin, I. P. et al. (2001) Polarization and self-polarization in thin PbZr1−xTixO3 (PZT) films. Journal of Physics Condensed Matter, 13 (39), article 8755. https://www.doi.org/10.1088/0953-8984/13/39/304 (In English)

Bruchhaus, R., Pitzer, D., Schreiter, M., Wersing, W. (1999) Optimized PZT thin films for pyroelectric IR detector arrays. Journal of Electroceramics, 3 (2), 151–162. https://doi.org/10.1023/A:1009995126986 (In English)

Calame, F., Muralt, P. (2007) Growth and properties of gradient free sol-gel lead zirconate titanate thin films. Applied Physics Letters, 90 (6), article 062907. https://doi.org/10.1063/1.2472529 (In English)

Eerenstein, W., Mathur, N. D., Scott, J. F. (2006) Multiferroic and magnetoelectric materials. Nature, 442 (7104), 759–765. https://doi.org/10.1038/nature05023 (In English)

Isupov, V. A. (1983) Some aspects of the physics of piezoelectric ceramics. Ferroelectrics, 46 (1), 217–225. https://doi.org/10.1080/00150198308225269 (In English)

Izyumskaya, N., Alivov, Y.-I., Cho, S.-J. et al. (2007) Processing, structure, properties, and applications of PZT thin films. Critical Reviews in Solid State and Materials Sciences, 32 (3-4), 111–202. https://doi.org/10.1080/10408430701707347 (In English)

Jaffe, B., Cook, W., Jaffe, H. (1971) Piezoelectric ceramics. London; New York: Academic Press, 328 p. (In English)

Kang, M.-G., Jung, W.-S., Kang, Ch.-Y., Yoon, S.-J. (2016) Recent progress on PZT based piezoelectric energy harvesting technologies. Actuators, 5 (1), article 5. https://doi.org/10.3390/act5010005 (In English)

Kholkin, A. L., Brooks, K. G., Taylor, D. V. et al. (1998) Self-polarization effect in Pb(Zr,Ti)O3 thin films. Integrated Ferroelectrics, 22 (1-4), 525–533. https://doi.org/10.1080/10584589808208071 (In English)

Muralt, P. (2008) Recent progress in materials issues for piezoelectric MEMS. Journal of the American Ceramic Society, 91 (5), 1385–1396. https://doi.org/10.1111/j.1551-2916.2008.02421.x (In English)

Noheda, B., Cox, D. E., Shirane, G. (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Applied Physics Letters, 74 (14), article 2059. https://doi.org/10.1063/1.123756 (In English)

Osipov, V. V., Kiselev, D. A., Kaptelov, E. Yu. et al. (2015) Internal field and self-polarization in lead zirconate titanate thin films. Physics of the Solid State, 57 (9), 1793–1799. http://dx.doi.org/10.1134/S1063783415090267 (In English)

Osipov, V. V., Kaptelov, E. Yu., Senkevich, S. V. et al. (2018) The study of self-poled PZT thin films under variation of lead excess. Ferroelectrics, 525 (1), 76–82. https://doi.org/10.1080/00150193.2018.1432931 (In English)

Polla, D. L. (1995) Microelectromechanical systems based on ferroelectric thin films. Microelectronic Engineering, 29 (1-4), 51–58. https://doi.org/10.1016/0167-9317(95)00114-X (In English)

Pronin, I. P., Kaptelov, E. Yu., Senkevich, S. V. et al. (2010) Crystallization of thin polycrystalline PZT films on Si/ SiO2/Pt substrates. Physics of the Solid State, 52 (1), 132–136. https://doi.org/10.1134/S1063783410010233 (In English)

Pronin, I. P., Kaptelov, E. Yu., Senkevich, S. V. et al. (2013) Vliyanie mezhfaznykh granits i nanovklyuchenij oksida svintsa na strukturnye i segnetoelektricheskie svojstva tonkikh plenok PZT [Influence of interphase boundaries and nanoinclusions of lead oxide on the structure and ferroelectric properties of PZT thin films]. Nanomaterialy i nanostruktury — XXI vek — Nanomaterials and Nanostructures XXI-Century, 4 (4), 21–29. (In Russian)

Pronin, I. P., Kukushkin, S. A., Spirin, V. V. et al. (2017) Formation mechanisms and the orientation of self-polarization in PZT polycrystalline thin films. Materials Physics and Mechanics, 30 (1), 20–34. (In English)

Scott, J. F. (1998) The physics of ferroelectric ceramic thin films for memory applications. Ferroelectrics Review, 1 (26), 1–129. (In English)

Scott, J. F. (2007) Application of modern ferroelectrics. Science, 315 (5814), 954–959. https://doi.org/10.1126/science.1129564 (In English)

Scott, J. F., Paz de Araujo, C. A. (1989) Ferroelectric memories. Science, 246 (4936), 1400–1405. https://doi.org/10.1126/science.246.4936.1400 (In English)

Sergienko, I. A., Gufan, Yu. M., Urazhdin, S. (2002) Phenomenological theory of phase transitions in highly piezoelectric perovskites. Physical Review B, 65 (14), article 144104. https://doi.org/10.1103/PhysRevB.65.144104 (In English)

Sviridov, E., Sem, I., Alyoshin, V. et al. (1994) Ferroelectric film self-polarization. MRS Online Proceedings Library, 361 (1), 141–146. https://doi.org/10.1557/PROC-361-141 (In English)

Volpyas, V. A., Tumarkin, A. V., Mikhailov, A. K. et al. (2016) Ion plasma deposition of oxide films with graded-stoichiometry composition: Experiment and simulation. Technical Physics Letters, 42 (7), 758–760. https://doi.org/10.1134/S1063785016070300 (In English)

Volpyas, V. A., Kozyrev, A. B. (2011) Thermalization of atomic particles in gases. Journal of Experimental and Theoretical Physics, 113 (1), article 172. https://doi.org/10.1134/S1063776111060227 (In English)

Vorotilov, K. A., Mukhortov, V. M., Sigov, A. S. (2011) Integrirovannye segnetoelektricheskie ustrojstva [Integrated ferroelectric devices]. Moscow: Energoatomizdat Publ., 175 p. (In Russian).

Vol’pyas, V. A., Kozyrev, A. B., Tumarkin, A. V. et al. (2019) The element composition variation in lead zirconate titanate upon the ion-plasma deposition: Experiment and simulation. Physics of the Solid State, 61 (7), 1223–1227. https://doi.org/10.1134/S1063783419070308 (In English)

Wada, S., Yako, K., Yokoo, K. et al. (2006) Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectrics, 334 (1), 17–27. https://doi.org/10.1080/00150190600689647 (In English)

Whatmore, R. W. (1999) Ferroelectrics, microsystems and nanotechnology. Ferroelectrics, 225 (1), 179–192. https://doi.org/10.1080/00150199908009126 (In English)

Willems, G. J., Wouters, D. J., Maes, H. E., Nouwen, R. (1997) Nucleation and orientation of sol-gel PZT films on Pt electrodes. Integrated Ferroelectrics, 15 (1-4), 19–28. https://doi.org/10.1080/10584589708015693 (In English)

Xu, Y. (1991) Ferroelectric materials and their applications. Amsterdam: North Holland Publ., 391 p. (In English)

Опубликован

2021-09-07

Выпуск

Раздел

Condensed Matter Physics