Extrema positions of charge carrier band spectrum in thin bismuth films

Authors

DOI:

https://doi.org/10.33910/2687-153X-2022-3-4-154-158

Keywords:

thin films, bismuth, transport phenomena, charge carriers’ concentration, band structure

Abstract

Many studies report an increase in charge carrier concentration in thin bismuth films as their thickness decreases at low temperatures. These results are obtained on the basis of data on resistivity, magnetoresistance, Hall coefficient, and thermal EMF measured in these films. The calculation is most often carried out within the framework of the two-band approximation assuming the quadraticity of the dispersion law of electrons and holes. Using these approximations, it is possible to estimate the change in the position of energy extremes relative to the chemical potential in these films based on concentration values of charge carriers. This article presents all these calculations and analyses the extrema movement of the charge carrier band spectrum in bismuth films with a change in their thickness.

References

Abdelbarey, D., Koch, J., Mamiyev, Z. et al. (2020) Thickness-dependent electronic transport through epitaxial nontrivial Bi quantum films. Physical Review B, 102 (11), article 115409. https://doi.org/10.1103/PhysRevB.102.115409 (In English)

Demidov, E. V. (2022) On the problem of calculating the concentration and mobility of charge carriers in thin bismuth films and a bismuth-antimony solid solution. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 16 (5), 712–719. (In English)

Demidov, E., Gerega, V., Grabov, V. et al. (2020) Topological insulator’s state in bismuth thin films. AIP Conference Proceedings, 2308, article 050007. https://doi.org/10.1063/5.0034335. (In English)

Demidov, E. V., Grabov, V. M., Komarov, V. A. et al. (2018) Topological insulator state in thin bismuth films subjected to plane tensile strain. Physics of the Solid State, 60 (3), 457–460. https://doi.org/10.1134/S106378341803006X (In English)

Demidov, E. V., Grabov, V. M., Komarov, V. A. et al. (2022) Rost kontsentratsii nositelej zaryada v tonkikh plenkakh vismuta [An increase in the concentration of charge carriers in thin films of bismuth]. Fizika i tekhnika poluprovodnikov — Physics and Technology of Semiconductors, 56 (2), 149–155. https://doi.org/10.21883/FTP.2022.02.51952.19 (In Russian)

Grabov, V. M. (1998) Energeticheskij spektr i mekhanizmy relaksatsii nositelej zaryada v legirovannykh kristallakh vismuta, sur’my i splavov vismut-sur’ma [Energy spectrum and relaxation mechanisms of charge carriers in doped crystals of bismuth, antimony and bismuth-antimony alloys]. PhD dissertation (Physics). Saint Petersburg, Herzen State Pedagogical University of Russia, 603 p. (In Russian)

Grabov, V. M., Komarov, V. A., Demidov, E. V., Klimantov, M. M. (2010) Yavleniya perenosa v monokristallicheskikh plenkakh vismuta [Transport phenomena in monocrystalline bismuth films]. Izvestia Rossijskogo gosudarstvennogo pedagogicheskogo universiteta im. A. I. Gertsena — Izvestia: Herzen University Journal of Humanities & Sciences, 122, 22–31. (In Russian)

Grabov, V. M., Komarov, V. A., Demidov, E. V. et al. (2017) The galvanomagnetic properties of bismuth films with thicknesses of 15–150 nm on mica substrates. Universitetskij nauchnyj zhurnal — Humanities and Science University Journal, 27, 56–68. (In English)

Hirahara, T., Shirai, T., Hajiri, T. et al. (2015) Role of quantum and surface-state effects in the bulk fermi-level position of ultrathin bi films. Physical Review Letters, 115 (10), article 106803. https://doi.org/10.1103/PhysRevLett.115.106803 (In English)

Hofmann, P. (2006) The surfaces of bismuth: Structural and electronic properties. Progress in Surface Science, 81 (5), 191–245. https://doi.org/10.1016/j.progsurf.2006.03.001 (In English)

Hsieh, D., Qian, D., Wray, L. et al. (2008) A topological Dirac insulator in a quantum spin Hall phase. Nature, 452 (7190), 970–974. https://doi.org/10.1038/nature06843 (In English)

Lenoir, B., Cassart, M., Michenaud, J.-P. et al. (1996) Transport properties of Bi-RICH Bi-Sb alloys. Journal of Physics and Chemistry of Solids, 57 (1), 89–99. https://doi.org/10.1016/0022-3697(95)00148-4 (In English)

Lv, H. Y., Liu, H. J., Pan, L. et al. (2010) Structural, electronic, and thermoelectric properties of BiSb nanotubes. Journal of Physical Chemistry, 114 (49), 21234–21239. https://doi.org/10.1021/jp108231j (In English)

Singh, S., Valencia-Jaime, I., Pavlic, O., Romero, A. H. (2018) Effect of spin-orbit coupling on the elastic, mechanical, and thermodynamic properties of Bi-Sb binaries. Physical Review B, 97, article 054108. https://doi.org/10.1103/PhysRevB.97.054108 (In English)

Suslov, A. V., Grabov, V. M., Komarov, V. A. et al. (2018) The band-structure parameters of Bi1 – xSbx (0 ≤ x ≤ 0.15) Thin films on substrates with different thermal-expansion coefficients. Semiconductors, 53 (5), 611–614. https://doi.org/10.1134/S1063782619050269 (In English)

Published

20.12.2022

Issue

Section

Condensed Matter Physics