Atmospheric implementation of superdense coding quantum algorithm

Authors

  • Bogdan A. Timchenko ITMO University
  • Maria P. Faleeva ITMO University
  • Pavel A. Gilev ITMO University
  • Irina V. Blinova ITMO University
  • Igor Yu. Popov ITMO University https://orcid.org/0000-0002-5251-5327

DOI:

https://doi.org/10.33910/2687-153X-2022-3-4-186-201

Keywords:

quantum channel, dense coding, entanglement, atmosphere, model

Abstract

We consider the properties of a quantum communication channel in open space using the superdense coding algorithm as an example. We studied the theoretical model of the installation that implements this algorithm, and identified the main factors affecting the quality of the model. Among them is the atmospheric transmittance, the efficiency of detectors, and the average value of the number of noise counts caused by background radiation and dark counts. We made a complete calculation of the installation model and obtained explicit results. These results were analyzed using realistic parameters of detectors and the atmosphere. It was found that the atmospheric turbulence instability, detectors efficiency and the average value of noise counts have the greatest influence on the results.

References

Adam, I. A., Yashin, D. A., Kargina, D. A., Nasedkina, B. A. (2022) Comparison of Gaussian and vortex beams in free-space QKD with phase encoding in turbulent atmosphere. Nanosystems: Physics, Chemistry, Mathematics, 13 (4), 392–403. https://doi.org/10.17586/2220-8054-2022-13-4-392-403 (In English)

Bennett, C. H., Wiesner, S. J. (1992) Communication via one- and two-particle operators on Einstein-Podolsky- Rosen states. Physical Review Letters, 69 (20), article 2881. https://doi.org/10.1103/PhysRevLett.69.2881 (In English)

Bohmann, M., Semenov, A. A., Sperling, J., Vogel, W. (2016) Gaussian entanglement in the turbulent atmosphere. Physical Review A, 94 (1), article 010302(R). https://doi.org/10.1103/PhysRevA.94.010302 (In English)

Dong, R., Lassen, M. O., Heersink, J. et al. (2008) Experimental entanglement distillation of mesoscopic quantum states. Nature Physics, 4 (12), 919–923. https://doi.org/10.1038/nphys1112 (In English)

Elser, D., Bartley, T., Heim, B. et al. (2009) Feasibility of free space quantum key distribution with coherent polarization states. New Journal of Physics, 11, article 045014. https://doi.org/10.1088/1367-2630/11/4/045014 (In English)

Faleeva, M. P., Popov, I. Y. (2020a) Entanglement transmission through turbulent atmosphere for modes of Gaussian beam. Quantum Information Processing, 19 (2), article 72. https://doi.org/10.1007/s11128-019-2569-y (In English)

Faleeva, M. P., Popov, I. Y. (2020b) On quantum bit coding by Gaussian beam modes for the quantum key distribution. Nanosystems: Physics, Chemistry, Mathematics, 11 (6), 651–658. https://doi.org/10.17586/2220-8054-2020-11-6-651-658 (In English)

Faleeva, M. P., Popov, I. Y. (2022) Singular numbers, entangled qubits transmission through a turbulent atmosphere and teleportation. Indian Journal of Physics, 96 (8), 2501–2505. https://doi.org/10.1007/s12648-021-02143-9 (In English)

Fedrizzi, A., Ursin, R., Herbst, T. et al. (2009) High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Physics, 5, 389–392. https://doi.org/10.1038/nphys1255 (In English)

Gilev, P. A., Popov, I. Y. (2019) Quantum image transmission based on linear elements. Nanosystems: Physics, Chemistry, Mathematics, 10 (4), 410–414. https://doi.org/10.17586/2220-8054-2019-10-4-410-414 (In English)

Gumberidze, M. O., Semenov, A. A., Vasylyev, D., Vogel, W. (2016) Bell nonlocality in the turbulent atmosphere. Physical Review A, 94 (5), article 053801. https://doi.org/10.1103/PhysRevA.94.053801 (In English)

Heersink, J., Marquardt, Ch., Dong, R. et al. (2006) Distillation of squeezing from non-gaussian quantum states. Physical Review Letters, 96 (25), article 253601. https://doi.org/10.1103/PhysRevLett.96.253601 (In English)

Herbst, T., Scheidl, T., Fink, M. et al. (2015) Teleportation of entanglement over 143 km. Proceedings of National Academy of Sciences, 112 (46), 14202–14205. https://doi.org/10.1073/pnas.1517007112 (In English)

Ishimaru, A. (1978) Wave propagation and scattering in random media. Vol. 1. New York: Academic Press, 339 p. https://doi.org/10.1016/B978-0-12-374701-3.X5001-7 (In English)

Mandel, L., Wolf, E. (1995) Optical coherence and quantum optics. Cambridge: Cambridge University Press, 1192 p. (In English)

Mattle, K., Weinfurter, H., Kwiat, P. G. et al. (1996) Dense coding in experimental quantum communication. Physical Review Letters, 76 (25), article 4656. https://doi.org/10.1103/PhysRevLett.76.4656 (In English)

Nielsen, M. A., Chuang, I. L. (2010) Quantum computation and quantum information. Cambridge: Cambridge University Press, 670 p. (In English)

Peters, N., Altepeter, J., Jeffrey, E. et al. (2003) Precise creation, characterization, and manipulation of single optical qubits. Quantum Information Computation, 3, 503–518. https://doi.org/10.48550/arXiv.quant-ph/0502177 (In English)

Schleich, W. P. (2001) Quantum optics in phase space. Berlin: WILEY-VCH Verlag, 695 p. https://doi.org/10.1002/3527602976 (In English)

Semenov, A. A., Turchin, A. V., Gomonay, H. V. (2008) Detection of quantum light in the presence of noise. Physical Review A, 78 (5), article 055803. https://doi.org/10.1103/PhysRevA.78.055803 (In English)

Semenov, A. A., Turchin, A. V., Gomonay, H. V. (2009) Erratum: Detection of quantum light in the presence of noise [Phys. Rev. A 78, 055803 (2008)]. Physical Review A, 79 (1), article 019902. https://doi.org/10.1103/PhysRevA.79.019902 (In English)

Semenov, A. A., Vogel, W. (2009) Quantum light in the turbulent atmosphere. Physical Review A, 80 (2), article 021802(R). https://doi.org/10.1103/PhysRevA.80.021802 (In English)

Semenov, A. A., Vogel, W. (2010) Entanglement transfer through the turbulent atmosphere. Physical Review A, 81 (2), article 023835. https://doi.org/10.1103/PhysRevA.81.023835 (In English)

Soderholm, J., Bjork, G., Klimov, A. B., Sanchez-Soto, L. L., Leuchs, G. (2012) Quantum polarization characterization and tomography. New Journal of Physics, 14 (11), article 115014. https://doi.org/10.1088/1367-2630/14/11/115014 (In English)

Tatarskii, V. I. (1971) Effect of the turbulent atmosphere on wave propagation. Jerusalem: Israel Program for Scientific Translations Publ., 488 p. (In English)

Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T. et al. (2007) Entanglement-based quantum communication over 144 km. Nature Physics, 3 (7), 481–486. https://doi.org/10.1038/nphys629 (In English)

Vasylyev, D., Semenov, A. A., Vogel, W. (2016) Atmospheric quantum channels with weak and strong turbulence. Physical Review Letters, 117 (9), article 090501. https://doi.org/10.1103/PhysRevLett.117.090501 (In English)

Williams, B., Sadlier, R., Humble, T. (2018) Superdense coding for quantum networking environments. Proceedings. Vol. 10547. Advances in Photonics of Quantum Computing, Memory, and Communication XI. San Francisco: SPIE OPTO Publ., article 105470B. https://doi.org/10.1117/12.2295016 (In English)

Published

20.12.2022

Issue

Section

Theoretical Physics