Polarization processes in silver iodide films near the superionic phase transition temperature
DOI:
https://doi.org/10.33910/2687-153X-2022-3-4-202-213Keywords:
superionic phase transition, silver iodide, dielectric spectroscopy, polarization processes, relaxation processesAbstract
The article reports the results of dielectric spectroscopy analysis exploring polarization processes in silver iodide nanocrystalline films in the region of thermal superionic phase transition. It also provides calculations of the system’s relaxation and energy parameters. The abrupt change of parameters at the transition point is demonstrated by activation energy of semiconductor conduction and commit phases, indicator of the degree of frequency dependence of conductivity, and the maximum value of the function of the tangent of the dielectric loss angle. The article proposes a model of the micro-mechanism of the thermal phase transition from a semiconductor to a superionic state. It is shown that, along with the superionic phase transition, films undergo a percolation phase transition with the formation of a two-dimensional percolation cluster.
References
Amrani, B., Ahmed, R., El Haj Hassan, F., Reshak, A. H. (2008) Structural, electronic and optical properties of AgI under pressure. Physics Letters A, 372 (14), 2502–2508. https://doi.org/10.1016/j.physleta.2007.12.004 (In English)
Barman, S. R., Shanthi, N., Shukla, A. K., Sama, D. D. (1995) Order-disorder and electronic transitions in Ag2 + σS single crystals, studied by photoemission spectroscopy. Physical Review B, 53 (7), 3746−3751. https://doi.org/10.1103/physrevb.53.3746 (In English)
Binner, J. G. P., Dimitrakis, G., Price, D. M. et al. (2006) Hysteresis in the β–α phase transition in silver iodide. Journal of Thermal Analysis and Calorimetry. 84 (2), 409–412. https://doi.org/10.1007/s10973-005-7154-1 (In English)
Castro-Arata, R. A., Grabko, G. I., Kononov, A. A. et al. (2021) Perenos zaryada v tonkikh sloyakh stekloobraznoj gibridnoj sistemy Ge28.5Pb14.5Fe0.5S56.5 [Charge transfer in thin layers of glassy Ge28.5Pb14.5Fe0.5S56.5]. Fizika i tekhnika poluprovodnikov, 55 (5), 450–454. https://doi.org/10.21883/FTP.2021.05.50836.9578 (In Russian)
Davydov, A. S. (1973) Kvantovaya mekhanika [Quantum mechanics]. Moscow: Nauka Publ., 704 p. (In Russian)
Elliott, S. R. (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics, 36 (2), 135–217. https://doi.org/10.1080/00018738700101971 (In English)
Farid, A. M., Atyia, H. E., Hegab, N. A. (2005) AC conductivity and dielectric properties of Sb2Te3 thin films. Vacuum, 80 (4), 284–294. https://doi.org/10.1016/j.vacuum.2005.05.003 (In English)
Fokina, S. V., Borisov, E. N., Tomaev, V. et al. (2016) AgI thin films prepared by laser ablation. Solid State Ionics, 297, 64–67. https://doi.org/10.1016/j.ssi.2016.10.004 (In English)
Gurevich, Yu. Ya., Kharkats, Yu. I. (1987) Superionnaya provodimost’ tverdykh tel [Superionic conductivity of solids]. In: Itogi nauki i tekhniki. VINITI. Seriya: Khimiya tverdogo tela [Results of science and technology. VINITI. Series: Solid state chemistry]. Moscow: VINITI Publ., pp. 3–156. (In Russian)
Ivanov-Shits, A. K. (2007) Computer simulation of superionic conductors: II. Cationic conductors. Review. Physical Properties of Crystals, 52 (2), 302–315. https://doi.org/10.1134/S1063774507020241 (In English)
Ivanov-Shits, A. K., Murin, I. V. (2000) Ionika tverdogo tela [Solid State Ionics]. Saint Petersburg: Saint Petersburg State University Publ., 616 p. (In Russian)
Ivanskoi, V. A. (2008) Approaches of the percolation theory and the free energy of dislocation clusters. Technical Physics, 53 (4), 455–461. https://doi.org/10.1134/S1063784208040105 (In English)
Johan, M. R., Tay, S. L., Hawari, N. L., Suan, S. (2011) Phase transition and complex impedance studies of mechano-chemically synthesized AgI-CuI solid solutions International Journal of Electrochemical Science, 6, 6235–6243. (In English)
Kobayashi, M., Ono, S., Tomoyose, T. (2004) Electronic structure and covalency in superionic conductors. Ionics. 10 (5–6), 415–420 https://doi.org/10.1007/BF02378002 (In English)
Kremer, K., Schonhals, A. (2003) Broadband dielectric spectroscopy. Berlin: Springer Publ., 729 p. (In English)
Long, A. R. (1982). Frequency-dependent loss in amorphous semiconductors. Advances in Physics, 31 (5), 553–637. https://doi.org/10.1080/00018738200101418 (In English)
Makiura, R., Yonemura, T., Yamada, T. et al. (2009) Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles. Nature Materials, 8 (6), 476–480. https://doi.org/10.1038/nmat2449 (In English)
Mott, N., Davis, E. (1982) Elektronnye protsessy v nekristallicheskikh veshchestvakh [Electronic processes in non-crystalline substances]. 2nd ed. Moscow: Mir Publ., 368 p. (In Russian)
Murrell, J. N., Kettle, S. F. A., Tedder, J. M. (1965) Valence theory. London: John Wiley & Sons Publ., 520 p. (In English)
Naik, S., Rabinal, M. H. K. (2022) Significance of electrode contact area on memristive parameters of silver iodide. Materials Science in Semiconductor Processing, 138, article 106309. http://dx.doi.org/10.1016/j.mssp.2021.106309 (In English)
Pauling, L. (1974) Obshchaya khimiya [General chemistry]. M.: Mir Publ., 846 p. (In Russian)
Popova, I. O., Khanin, S. D., Shadrin, E. B. (2005) Sovremennye predstavleniya o fizike fazovogo perekhoda metall-provodnik v oksidakh i khalkogenidakh perekhodnykh metallov i vozmozhnostyakh ego primeneniya [Modern ideas about the physics of the metal-conductor phase transition in transition metal oxides and chalcogenides and the possibilities of its application]. Izvestia Rossijskogo gosudarstvennogo pedagogicheskogo universiteta im. A. I. Gertsena — Izvestia: Herzen University Journal of Humanities & Sciences, 5 (13), 128–136. (In Russian)
Sidorov, A. I., Nashchekin, A. V., Castro, R. A. et al. (2021) Optical and dielectric properties of nanocomposites on base nanoporous glasses with silver and silver iodide nanowires. Physica B: Condensed Matter, 603, article 412764. https://doi.org/10.1016/j.physb.2020.412764 (In English)
Ulutas, K. Deger, D., Yakut, S. (2013) Thickness dependence of the dielectric properties of thermally evaporated Sb2Te3 thin films. Journal of Physics: Conference Series, 417 (1), article 012040. https://doi.org/10.1088/1742-6596/417/1/012040 (In English)
Vergent’eva, T. Yu., Koroleva, E. Yu., Kurdyukov, D. A. et al. (2013) Behavior of the low-frequency conductivity of silver iodide nanocomposites in the superionic phase transition region. Physics of the Solid State, 55 (1), 175–180. https://doi.org/10.1134/S1063783413010320 (In English)
Volkov, A. S., Koposov, G. D., Perfiliev, R. O. (2018) On the Physical meaning of disperse parameters of frequency dependence of dielectric permittivity in the Havriliak—Negami model. Optics and Spectroscopy, 125 (3), 379–382. https://doi.org/10.1134/S0030400X18090242 (In English)
Wright, A. F., Fender, B. E. F. (1977) The structure of superionic compounds by powder neutron diffraction. I. Cation distribution in α-AgI. Journal of Physics C: Solid State Physics, 10 (13), article 2261. https://doi.org/10.1088/0022-3719/10/13/003 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Aleksandr V. Ilinskiy, Evgenii B. Shadrin, Rene A. Castro Arata, Irina O. Popova
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.