Local environment of germanium atoms in Ge3Sb2Te6, Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7 amorphous and crystalline films

Authors

DOI:

https://doi.org/10.33910/2687-153X-2022-4-1-30-35

Keywords:

local structure, Mössbauer spectroscopy, amorphous and crystalline films, valence state, local environment

Abstract

The valence state and local environment of germanium atoms in Ge3Sb2Te6, Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7 amorphous and crystalline films were determined by Mossbauer spectroscopy on the 119Sn isotope. In crystalline films, divalent germanium is located in octahedral positions in a rhombohedrally distorted NaCl-type crystal lattice. In amorphous films, tetravalent germanium atoms form a tetrahedral system of chemical bonds. In all the films, the nearest environment of germanium contains mainly tellurium atoms.

References

Baker, D. A., Paesler, M. A., Lucovsky, G., Taylor, P. C. (2006) EXAFS study of amorphous Ge2Sb2Te5. Journal of Non-Crystalline Solids, 352 (9-20), 1621–1623. https://doi.org/10.1016/j.jnoncrysol.2005.11.079 (In English)

Bordovskii, G. A., Marchenko, A. V., Nasredinov, F. S. et al. (2021) Messbauerovskie issledovaniya lokal’nogo okruzheniya atomov v amorfnykh i kristallicheskikh plenkakh Ge2Sb2Te5 [Mossbauer studies of the local surrounding of atoms in amorphous and crystalline Ge2Sb2Te5 films]. Fizika i khimiya stekla — Glass Physics and Chemistry, 47 (2), 179–189. https://doi.org/10.31857/S0132665121020037 (In Russian)

Jovari, P., Kaban, I., Steiner, J., et al. (2008) Local order in amorphous Ge2Sb2Te5 and GeSb2Te4. Physical Review B, 77 (3), article 035202. https://doi.org/10.1103/PhysRevB.77.035202 (In English)

Kolobov, A. V., Fons, P., Frenkel, A. I. et al. (2004) Understanding the phase-change mechanism of rewritable optical media. Nature Materials, 3, 703–708. https://doi.org/10.1038/nmat1215 (In English)

Ledda, F., Muntoni, C., Rucci, A. et al. (1988) On the metal distribution in the system GeTe-Sb2Te3, Hyperfine Interactions, 41, 591–594. https://doi.org/10.1007/BF02400460 (In English)

Lencer, D., Salinga, M., Wuttig, M. (2011) Design rules for phase-change materials in data storage applications. Advanced Materials, 23 (18), 2030–2058. https://doi.org/10.1002/adma.201004255 (In English)

Lotnyk, A., Ross, U., Bernutz, S. et al. (2016) Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures. Scientific Reports, 6, article 26724. https://doi.org/10.1038/srep26724 (In English)

Marchenko, A. V., Terukov, E. I., Nasredinov, F. S. et al. (2021) Local structure and anti-structural defects of tin in amorphous and crystalline Ge2Sb2Te5 films. Semiconductors, 55 (1), 1–6. https://doi.org/10.1134/S1063782621010127 (In English)

Paesler, M. A., Baker, D. A., Lucovsky, G. et al. (2007) Bond constraint theory and EXAFS studies of local bonding structures of Ge2Sb2Te4, Ge2Sb2Te5, and Ge2Sb2Te7. Journal of Optoelectronics and Advanced Materials, 9 (10), 2996–3001. (In English)

Qiao, C., Guo, Y. R., Wang, J. J. et al. (2019) The local structural differences in amorphous Ge-Sb-Te alloys. Journal of Alloys and Compounds, 774, 748–757. https://doi.org/10.1016/j.jallcom.2018.10.011 (In English)

Seregin, P. P., Sivkov, V. P., Nasredinov, F. S. et al. (1977) The influence of the crystal-to-glass transition on the local structure of semiconductors. Physica Status Solidi (a), 39 (2), 437–444. https://doi.org/10.1002/pssa.2210390209 (In English)

Seregina, L. N, Nasredinov, F. S., Melekh, B. T. et al. (1977) Issledovanie lokal’noj struktury stekol v sistemakh kremnij–tellur, germanij–tellur i germanij–tellur–mysh’yak s pomoshch’yu messbauerovskoj spektroskopii na primesnykh atomakh olova [Study of the local structure of glasses in silicon-tellurium, germanium-tellurium and germanium-tellurium-arsenic systems using Mossbauer spectroscopy on impurity tin atoms]. Fizika i khimiya stekla — Glass Physics and Chemistry, 3 (4), 328–331. (In Russian)

Stellhorn, J. R., Hosokawa, S., Kohara, S. (2020) Local- and intermediate-range structures on ordinary and exotic phase-change materials by anomalous x-ray scattering. Analytical Sciences, 36, 5–9. https://doi.org/10.2116/analsci.19SAR02 (In English)

Sun, Z., Kyrsta, S., Music, D. et al. (2007) Structure of the Ge-Sb-Te phase-change materials studied by theory and experiment. Solid State Communications, 143 (4-5), 240–244. https://doi.org/10.1016/j.ssc.2007.05.018 (In English)

Urban, P., Schneider, M., Erra, L. et al. (2013) Temperature dependent resonant X-ray diffraction of single-crystalline Ge2Sb2Te5. CrystEngComm, 15 (24), 4823–4829. https://doi.org/10.1039/C3CE26956F (In English)

Wang, X.-P., Li, X.-B., Chen, N.-K. et al. (2017) Element-specific amorphization of vacancy-ordered GeSbTe for ternary-state phase change memory. Acta Materialia, 136, 242–248. https://doi.org/10.1016/j.actamat.2017.07.006 (In English)

Zhang, B., Wang, X.-P., Shen, Z.-J. et al. (2016) Vacancy structures and melting behavior in rock-salt GeSbTe. Scientific Reports, 6, article 25453. https://doi.org/10.1038/srep25453 (In English)

Zheng, Y., Wang, Y., Xin, T. et al. (2019) Direct atomic identification of cation migration induced gradual cubicto-hexagonal phase transition in Ge2Sb2Te5. Communications Chemistry, 2, article 13. https://doi.org/10.1038/s42004-019-0114-7 (In English)

Published

14.04.2023

Issue

Section

Physics of Semiconductors