Столкновения частиц в процессе гравитационного коллапса метрики Вайдья

Авторы

  • Виталий Дмитриевич Вертоградов Российский государственный педагогический университет им. А. И. Герцена; Специальная астрофизическая обсерватория Российской академии наук https://orcid.org/0000-0002-5096-7696

DOI:

https://doi.org/10.33910/2687-153X-2022-4-1-17-23

Ключевые слова:

гравитационный коллапс, столкновение частиц, метрика Вайдья, голая сингулярность, конформная симметрия

Аннотация

Энергия центра масс двух сталкивающихся частиц, в метрике Шварцшильда, может быть неограниченно большой если мы рассматриваем лобовое столкновение частиц. Для такого процесса, одна частица должна двигаться вдоль белодырных геодезических, а другая должна двигаться навстречу вдоль чернодырной геодезической. Такое возможно, если рассматривается модель гравитационного коллапса. В этой статье, мы рассматриваем хорошо известную модель гравитационного коллапса метрики Вайдья, результатом которого является формирование голой сингулярности и исследуем вопрос о столкновении частиц вблизи граници коллапсирующего вещества. Мы рассматриваем энергию центра масс сталкивающихся частиц. Одна частица летит по геодезической, начинающейся в голой сингулярности, а другая падает на коллапсирующее вещество. Мы показываем, что энергия центра масс неограничена, если столкновение происходит в близи конформного горизонта Киллинга.

Библиографические ссылки

Banados, M., Silk, J., West, S. M. (2009) Kerr black holes as particle accelerators to arbitrarily high energy. Physical Review Letters, 103 (11), article 111102. https://doi.org/10.1103/PhysRevLett.103.111102 (In English)

Blau, M. (2022) Lecture notes on general relativity. Bern: Albert Einstein Center for Fundamental Physics Publ., 997 p. (In English)

Dey, D., Joshi, P. S., Mosani, K., Vertogradov, V. (2022) Causal structure of singularity in non-spherical gravitational collapse. The European Physical Journal C, 82 (5), article 431. https://doi.org/10.1140/epjc/s10052-022-10401-1 (In English)

Dwivedi, I. H., Joshi, P. S. (1989) On the nature of naked singularities in Vaidya spacetimes. Classical and Quantum Gravity, 6 (11), 1599 – 1606. https://doi.org/10.1088/0264-9381/6/11/013 (In English)

Grib, A. A., Pavlov, Yu. V. (2015) Are black holes totally black? Gravitation and Cosmology, 21 (1), 13–18. https://doi.org/10.1134/S0202289315010065 (In English)

Grib, A. A., Pavlov, Yu. V., Vertogradov, V. D. (2014) Geodesics with negative energy in the ergosphere of rotating black holes. Modern Physics Letters A, 29 (20), article 1450110. https://doi.org/10.1142/S0217732314501107 (In English)

Harada, T., Nemoto, H., Miyamoto, U. (2012) Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole. Physical Review D, 86 (2), article 024027. https://doi.org/10.1103/PhysRevD.86.024027 (In English)

Hayward, S. A. (2006) Formation and evaporation of nonsingular black holes. Physical Review Letters, 96 (3), article 031103. https://doi.org/10.1103/PhysRevLett.96.031103 (In English)

Joshi, P. S. (2007) Gravitational collapse and spacetime singularities. New York: Cambridge University Press, 273 p. https://doi.org/10.1017/CBO9780511536274 (In English)

Joshi, P. S., Malafarina, D. (2011) Recent developments in gravitational collapse and spacetime singularities. International Journal of Modern Physics D, 20 (14), 2641–2729. https://doi.org/10.1142/S0218271811020792 (In English)

Mkenyeleye, M. D., Goswami, R., Maharaj, S. D. (2014) Gravitational collapse of generalized Vaidya spacetime. Physical Review D, 90 (6), article 064034. https://doi.org/10.1103/PhysRevD.90.064034 (In English)

Nielsen, A. B. (2010) The spatial relation between the event horizon and trapping horizon. Classical and Quantum Gravity, 27 (24), article 245016. https://doi.org/10.1088/0264-9381/27/24/245016 (In English)

Nielsen, A. B. (2014) Revisiting vaidya horizons. Galaxies, 2 (1), 62–71. https://doi.org/10.3390/galaxies2010062 (In English)

Nielsen, A. B., Yoon, J.-H. (2008) Dynamical surface gravity. Classical and Quantum Gravity, 25 (8), article 085010. https://doi.org/10.1088/0264-9381/25/8/085010 (In English)

Nolan, B. C. (1999) Strengths of singularities in spherical symmetry. Physical Review D, 60 (2), article 024014. https://doi.org/10.1103/PhysRevD.60.024014 (In English)

Ojako, S., Goswami, R., Maharaj, S. D., Narain, R. (2020) Conformal symmetries in generalised Vaidya spacetimes. Classical and Quantum Gravity, 37 (5), article 055005. https://doi.org/10.1088/1361-6382/ab5e2d (In English)

Papapetrou, A. (1985) A Random Walk in Relativity and Cosmology. New Delhi: Wiley Eastern Publ., 236 p. (In English)

Poisson, E. (2004) A relativist’s toolkit: The mathematics of black-hole mechanics. Cambridge: Cambridge University Press, 233 p. (In English)

Solanki, J., Perlick, V. (2022) Photon sphere and shadow of a time-dependent black hole described by a Vaidya metric. Physical Review D, 105 (6), article 064056. https://doi.org/10.1103/PhysRevD.105.064056 (In English)

Tanatarov, I. V., Zaslavskii, O. B. (2013) Banados-Silk-West effect with nongeodesic particles: Extremal horizons. Physical Review D, 88 (6), article 064036. https://doi.org/10.1103/PhysRevD.88.064036 (In English)

Tipler, F. J. (1977) Singularities in conformally flat spacetimes. Physics Letters A, 64 (1), 8–10. https://doi.org/10.1016/0375-9601(77)90508-4 (In English)

Vaidya, P. C. (1951) Nonstatic solutions of Einstein’s field equations for spheres of fluids radiating energy. Physical Review, 83 (1), article 10. https://doi.org/10.1103/PhysRev.83.10 (In English)

Vertogradov, V. D. (2015) Geodesics for particles with negative energy in Kerr’s metric. Gravitation and Cosmology, 21 (2), 171–174. https://doi.org/10.1134/S0202289315020115 (In English)

Vertogradov, V. D. (2016a) Naked singularity formation in generalized Vaidya space-time. Gravitation and Cosmology, 22 (2), 220–223. https://doi.org/10.1134/S020228931602016X (In English)

Vertogradov, V. D. (2016b) Gravitational collapse of Vaidya spacetime. International Journal of Modern Physics: Conference Series, 41, article 1660124. https://doi.org/10.1142/S2010194516601241 (In English)

Vertogradov, V. D. (2018) The eternal naked singularity formation in the case of gravitational collapse of generalized Vaidya space–time. International Journal of Modern Physics A, 33 (17), article 1850102. https://doi.org/10.1142/S0217751X18501026 (In English)

Vertogradov, V. D. (2020) The negative energy in generalized vaidya spacetime. Universe, 6 (9), article 155. https://doi.org/10.3390/universe6090155 (In English)

Vertogradov, V. D. (2021) The nature of the naked singularity in generalized Vaidya spacetime and white hole geodesics. Physics of Complex Systems, 2 (1), 33–40. https://doi.org/10.33910/2687-153X-2021-2-1-33-40 (In English)

Vertogradov, V. D. (2022a) The structure of the generalized Vaidya spacetime containing the eternal naked singularity. International Journal of Modern Physics A, vol. 37, no. 28n29, article 2250185. https://doi.org/10.1142/S0217751X22501858 (In English)

Vertogradov, V. D. (2022b) Non-linearity of Vaidya spacetime and forces in the central naked singularity. Physics of Complex Systems, 3 (2), 81–85. https://doi.org/10.33910/2687-153X-2022-3-2-81-85 (In English)

Wang, A., Wu, Y. (1999) Generalized vaidya solutions. General Relativity and Gravitation, 31 (1), 107–114. https://doi.org/10.1023/A:1018819521971 (In English)

Zaslavskii, O. B. (2012a). Acceleration of particles by black holes as a result of deceleration: Ultimate manifestation of kinematic nature of BSW effect. Physics Letters B, 712 (3), 161–164. https://doi.org/10.1016/j.physletb.2012.05.009 (In English)

Zaslavskii, O. B. (2012b) Energy extraction from extremal charged black holes due to the Banados-Silk-West effect. Physical Review D, 86 (12), article 124039. https://doi.org/10.1103/PhysRevD.86.124039 (In English)

Опубликован

2023-04-14

Выпуск

Раздел

Theoretical Physics