On the temperature of hairy black holes

Authors

DOI:

https://doi.org/10.33910/2687-153X-2023-4-2-59-67

Keywords:

hairy black hole, Hawking temperature, charged black hole, gravitational decoupling, Einstein’s equations

Abstract

The gravitational decoupling method represents an extremely useful tool to obtain new solutions of the Einstein equations through minimal geometrical deformations. In this paper, we consider a hairy charged black hole obtained by the gravitational decoupling and calculate its Hawking temperature in order to compare it with the case when the hairs are ignored. We have found out that the hair, under some conditions of black hole parameters, affect the Hawking temperature and can increase it. We have also found out that the black hole temperature, in the hairy case, does not depend on the electric charge.

References

Banados, M., Silk, J., West, S. M. (2009) Kerr black holes as particle accelerators to arbitrarily high energy. Physical Review Letters, 103 (11), article 111102. https://doi.org/10.1103/PhysRevLett.103.111102 (In English)

Brown, J. D., Creighton, J., Mann, R. B. (1994) Temperature, energy, and heat capacity of asymptotically anti–de Sitter black holes. Physical Review D, 50 (10), article 6394. https://doi.org/10.1103/PhysRevD.50.6394 (In English)

Carlip, S. (2009) Black hole thermodynamics and statistical mechanics. Lecture Notes in Physics, 769, 89–123. https://doi.org/10.1007/978-3-540-88460-6_3 (In English)

Cavalcanti, R. T., Alves, K. D. S., Hoff da Silva, J. M. (2022). Near-horizon thermodynamics of hairy black holes from gravitational decoupling. Universe, 8 (7), article 363. https://doi.org/10.3390/universe8070363 (In English)

Contreras, E., Ovalle, J., Casadio, R. (2021) Gravitational decoupling for axially symmetric systems and rotating black holes. Physical Review D, 103 (4), article 044020. https://doi.org/10.1103/PhysRevD.103.044020 (In English)

Gibbons, G. W., Hawking, S. W. (1977) Action integrals and partition functions in quantum gravity. Physical Review D, 15 (10), article 2752. https://doi.org/10.1103/PhysRevD.15.2752 (In English)

Grib, A. A., Pavlov, Yu. V. (2015) Are black holes totally black? Gravitation and Cosmology, 21 (1), 13–18. https://doi.org/10.1134/S0202289315010065 (In English)

Grib, A. A., Pavlov, Yu. V. (2022) On phase transitions near black holes. JETP Letters, 116 (8), 493–499. https://doi.org/10.1134/S0021364022601907 (In English)

Hawking, S. W. (1975) Particle creation by black holes. Communications in Mathematical Physics, 43 (3), 199–220. https://doi.org/10.1007/BF02345020 (In English)

Hawking, S. W., Perry, M. J., Strominger, A. (2016) Soft hair on black holes. Physical Review Letters, 116 (23), article 231301. https://doi.org/10.1103/PhysRevLett.116.231301 (In English)

Mahapatra, S., Banerjee, I. (2023) Rotating hairy black holes and thermodynamics from gravitational decoupling. Physics of the Dark Universe, 39, article 101172. https://doi.org/10.1016/j.dark.2023.101172 (In English)

Ovalle, J. (2017) Decoupling gravitational sources in general relativity: From perfect to anisotropic fluids. Physical Review D, 95 (10), article 104019. https://doi.org/10.1103/PhysRevD.95.104019 (In English)

Ovalle, J., Casadio, R., Contreras, E., Sotomayor, A. (2021) Hairy black holes by gravitational decoupling. Physics of the Dark Universe, 31, article 100744. https://doi.org/10.1016/j.dark.2020.100744 (In English)

Ovalle, J., Casadio, R., da Rocha, R. et al. (2018) Black holes by gravitational decoupling. The European Physical Journal C, 78, article 960. https://doi.org/10.1140/epjc/s10052-018-6450-4 (In English)

Poisson, E. (2007) A relativist’s toolkit: The mathematics of black-hole mechanics. Cammbridge: Cambridge University Publ., 233 p. (In English)

Ramos, A., Arias, C., Avalos, R., Contreras, E. (2021) Geodesic motion around hairy black holes. Annals of Physics, 431, article 168557. https://doi.org/10.1016/j.aop.2021.168557 (In English)

Vagnozzi, S., Rittick, R., Yu-Dai, T. et al. (2022) Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A*. arXiv, article 2205.07787. [Online]. Available at: https://doi.org/10.48550/arXiv.2205.07787 (accessed 10.03.2023). (In English)

Vertogradov, V. (2022). On the particle collisions during gravitational collapse of Vaidya spacetimes. arXiv:2211.16189. [Online]. Available at: https://doi.org/10.48550/arXiv.2211.16189 (accessed 17.01.2023). (In English)

Vertogradov, V., Misyura, M. (2022) Vaidya and generalized vaidya solutions by gravitational decoupling. Universe, 8 (11), article 567. https://doi.org/10.3390/universe8110567 (In English)

Visser, M. (1992) Dirty black holes: Thermodynamics and horizon structure. Physical Review D, 46 (6), article 2445. https://doi.org/10.1103/PhysRevD.46.2445 (In English)

Zaslavskii, O. B. (2012) Acceleration of particles by black holes as a result of deceleration: Ultimate manifestation of kinematic nature of BSW effect. Physics Letters B, 712 (3), 161–164. https://doi.org/10.1016/j.physletb.2012.05.009 (In English)

Published

09.06.2023

Issue

Section

Theoretical Physics