Interaction of subsystems in nonlinear dynamics problems. Various phases of chaos

Authors

DOI:

https://doi.org/10.33910/2687-153X-2023-4-3-103-111

Keywords:

nonlinear dynamics, strange attractor, chaotic attractor, probability density, chaos, thermodynamic phase

Abstract

A model of two interacting dissipative subsystems described by equations of nonlinear dynamics is considered. Each of the subsystems is a nonlinear oscillator driven by an external periodic field. The numerical calculation shows that chaotic oscillations can occur in this system. Their phase trajectories are described by a chaotic attractor in the limit of large times. It is shown that due to the symmetry of the system, different initial conditions can lead to different chaotic attractors. An analogy is discussed between various strange attractors of this model and different phases of matter in systems with a large number of particles.

References

Grinchenko, V. T., Matsipura, V. T., Snarskij, A. A. (2007) Vvedenie v nelinejnuyu dinamiku. Khaos i fraktaly [Introduction to Nonlinear dynamics. Chaos and fractals]. 2nd ed. Moscow: URSS Publ., 283 p. (In Russian)

Evers, W. H., Goris, B., Bals, S. et al. (2013) Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Letters, 13 (6), 2317–2323. https://doi.org/10.1021/nl303322k (In English)

Kondepudi, D. K., Prigogine, I. (2015) Modern thermodynamics: From heat engines to dissipative structures. Chichester: John Wiley & Sons Publ., 341 p. (In English)

Kondratiev, A. S., Liaptsev, A. V. (2008) Fizika. Zadachi na komp’yutere [Physics. Tasks on the computer]. Moscow: Physmatlit Publ., 400 p. (In Russian)

Kuznetsov, S. P. (2006) Dinamicheskij khaos: Kurs lektsij [Dynamic chaos: A course of lectures]. 2nd ed., comp. Moscow: Physmatlit Publ., 356 p. (In Russian)

Liaptsev, A. V. (2013) Simmetriya regulyarnykh i khaoticheskikh dvizhenij v zadachakh nelinejnoj dinamiki. Uravnenie Duffinga [The symmetry of regular and chaotic motions in nonlinear dynamic problems. Duffing equation]. Izvestia Rossijskogo gosudarstvennogo pedagogicheskogo universiteta im. A. I. Gertsena — Izvestia: Herzen University Journal of Humanities & Sciences, 157, 24–34. (In Russian)

Liaptsev, A. V. (2014) Simmetriya regulyarnykh i khaoticheskikh dvizhenij v zadachakh nelinejnoj dinamiki. Rotator v periodicheskom pole [Symmetry of regular and chaotic motions in nonlinear dynamic problems. Rotator in periodic field Izvestia Rossijskogo gosudarstvennogo pedagogicheskogo universiteta im. A. I. Gertsena — Izvestia: Herzen University Journal of Humanities & Sciences, 165, 23–34. (In Russian)

Liapzev, A. V. (2019) The calculation of the probability density in phase space of a chaotic system on the example of rotator in the harmonic field. Computer Assisted Mathematics, 1, 55–65. (In English)

Liu, W., Luo, X., Bao, Y. et al. (2017) A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nature Chemistry, 9 (6), 563–570. https://doi.org/10.1038/nchem.2696 (In English)

Malinetsky, G. G., Potapov, A. B. (2000) Sovremennye problemy nelinejnoj dinamiki [Modern problems of nonlinear dynamics]. Moscow: Editorial URSS Publ., 336 p. (In Russian)

Ryzhov, I. V., Vasil’ev, N. A., Kisiva, I. S. et al. (2017) Cooperative emission from an ensemble of three-level Λ radiators in a cavity: An insight from the viewpoint of dynamics of nonlinear systems. Journal of Experimental and Theoretical Physics, 124 (5), 683–700. https://doi.org/10.1134/S1063776117050053 (In English)

Ryzhov, I. V., Malikov, R. F., Malyshev, A. V., Malyshev, V. A. (2021) Quantum metasurfaces of arrays of Λ-emitters for photonic nano-devices. Journal of Optics, 23 (11), article 11510. https://doi.org/10.1088/2040-8986/ac2788 (In English)

Sagdeev, R. Z., Usikov, D. A., Zaslavsky, G. M. (1988) Nonlinear Physics: From the pendulum to turbulence and chaos. New York: Harwood Academic Publ., 675 p. (In English)

Schuster, G. H. (1984) Deterministic chaos. An introduction. Weinheim: Physik-Verlag, 304 p. (In English)

Soukoulis, C. M., Wegener, W. (2010) Optical metamaterials—more bulky and less lossy. Science, 330 (6011), 1633–1634. (In English)

Zheludev, N. I. (2010) The road ahead for metamaterials. Science, 328 (5978), 582–583. (In English)

Published

07.09.2023

Issue

Section

Theoretical Physics