Complex non-exponential form of damped vibrations in uniaxially oriented polymeric materials with one mechanical degree of freedom
DOI:
https://doi.org/10.33910/2687-153X-2023-4-4-161-175Keywords:
uniaxially oriented polymeric materials, longitudinal low amplitude oscillations, highly elastic deformation, constitutive equation, beatsAbstract
In the present paper the relaxation properties of uniaxially oriented polymer threads are investigated. Vibrational relaxation in mechanical system with one degree of freedom is analyzed. This system consists of a heavy weight suspended on a light thread made of a uniaxially oriented polymer material.
The authors experimentally confirmed the existence of beats for a number of polymer materials (polycapromide, SVM, Terlon, Armos, etc.) at a certain static load level below the glass transition temperature. A physical explanation is given for the existence of the second vibration mode.
On the one hand, elastic oscillations occur in the system, on the other hand, according to the barrier model, oscillations of the occupation numbers of energy levels take place. Thus, another vibration mode arises, associated with highly elastic deformation, since highly elastic deformation is determined by the occupation numbers of the corresponding states. At close frequencies the beat effect is observed.
References
Belousov, B. P. (1982) Periodicheski dejstvuyushchaya reaktsiya i ee mekhanizm [Intermittent reaction and its mechanism]. Khimiya i zhizn’, 7, 65–70. (In Russian)
Golovina, V. V., Rymkevich, P. P., Rymkevich, O. V. (2022) Effekt bienij v odnoosnoorientirovannykh polimernykh materialakh [The beating effect in uniaxial oriented polymer materials]. Nauchno-tekhnicheskij vestnik informatsionnykh tekhnologij, mekhaniki i optiki – Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 22 (5), 999–1006. https://doi.org/10.17586/2226-1494-2022-22-5-999-1006 (In Russian)
Gorshkov, A. S. (2004) Dinamicheskaya vyazkouprugost’ sinteticheskikh nitej v nachal’noj stadii deformirovaniya [Dynamic viscoelasticity of synthetic threads in the initial stage of deformation]. PhD dissertation (Technical Sciences). Saint Petersburg, State University of Industrial Technologies and Design, 178 p. (In Russian)
Gorshkov, A. S., Makarov, A. G., Romanova, A. A., Rymkevich, P. P. (2013) Modelirovanie deformatsionnykh protsessov orientirovannykh polimerov na osnove opisaniya kinetiki nadmolekulyarnykh struktur, razdelennykh energeticheskimi bar’erami [Modelling of directed polymers deformation processes based on the description of the kinetics of supramolecular structures separated by energy barriers]. Inzhenerno-stroitel’nyj zhurnal — Magazine of Civil Engineering, 9 (44), 75–83. https://doi.org/10.5862/MCE.44.10 (In Russian)
Gorshkov, A. S., Makarov, A. G., Romanova, A. A., Rymkevich, P. P. (2015) Reologicheskiye mekhanizmy deformirovaniya oriyentirovannykh polimerov [Rheological deformation mechanisms of oriented polymers]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka — Construction materials, the equipment, technologies of XXI century, 5-6 (196-197), 37–39. (In Russian)
Gorshkov, A. S., Pereborova, N. V., Vavilov, D. S. et al. (2023) Strukturno-reologicheskaya model’ sinteticheskoj niti so spiral’nym uprugo-vyazkim elementom [Structural-rheological model of a synthetic thread with a spiral elastic-viscous element]. Izvestiya vysshikh uchebnykh zavedenij. Tekhnologiya tekstil’noj promyshlennosti — The News of Higher Educational Institutions. Technology of Light Industry, 59 (1), 60–66. (In Russian)
Gorshkov, A. S., Romanova, A. A., Rymkevich, P. P., Stalevich, A. M. (2004) Amplitudnaya modulyatsiya oriyentirovannykh polimerov v nachal’noj stadii deformirovaniya [Amplitude modulation of oriented polymers in the initial stage of deformation]. Fiziko-khimiya polimerov: sintez, svojstva i primeneniye, 10, 111–112. (In Russian)
Gunn, J. B. (1963) Microwave oscillations of current III-V semiconductors. Solid State Communications, 1 (4), 88–91. https://doi.org/10.1016/0038-1098(63)90041-3 (In English)
Makarov, A. G., Pereborova, N. V., Vagner, V. I., Vasil’eva, E. K. (2015) Computer modeling and prediction of the deformation properties of polymeric marine cables. Fibre Chemistry, 47(1), 51–57. https://doi.org/10.1007/s10692-015-9637-6 (In English)
Rabotnov, Yu. N. (1988) Mekhanika deformiruemogo tverdogo tela [Mechanics of deformable solid]. Moscow: Nauka Publ., 712 p. (In Russian)
Romanova, A. A. (1990) Matematicheskoe modelirovanie deformatsionnykh svojstv sinteticheskikh nitej pri dinamicheskom nagruzhenii [Mathematical modeling of the deformation properties of synthetic threads under dynamic loading]. PhD dissertation (Technical Sciences). Saint Petersburg, Leningrad Institute of Textile and Light Industry, 231 p. (In Russian)
Romanova, A. A., Rymkevich, P. P., Gorshkov, A. S., Stalevich, A. M. (2005) Dynamic relaxation of synthetic fibres. Fibre Chemistry. 37 (4), 289–292. https://doi.org/10.1007/s10692-005-0097-2 (In English)
Romanova, A. A., Rymkevich, P. P., Gorshkov, A. S., Stalevich, A. M. (2007a) Relaksiruyushchij modul’ Yunga sinteticheskikh nitej [Young relaxing modulus of synthetic threads]. Izvestiya vysshikh uchebnykh zavedenij. Tekhnologiya tekstil’noj promyshlennosti — Proceedings of the Higher Educational Institutions. Textile Industry Technology, 4 (299), 3–5. (In Russian)
Romanova, A. A., Rymkevich, P. P., Gorshkov, A. S. et al. (2007b) A new phenomenon—amplitude-modulated free oscillations (beatings) in loaded, highly oriented fibers from semicrystalline polymers. Journal of Macromolecular Science. Part B: Physics, 46 (3), 467–474. http://dx.doi.org/10.1080/00222340701257703 (In English)
Romanova, A. A., Rymkevich, P. P., Stalevich, A. M. (2000) Kineticheskoe opisanie relaksatsii mekhanicheskikh napryazhenij v sinteticheskikh nityakh [Kinetic description of relaxation of mechanical stresses in synthetic threads]. Izvestiya vysshikh uchebnykh zavedenij. Tekhnologiya tekstil’noj promyshlennosti — Proceedings of the Higher Educational Institutions. Textile Industry Technology, 1 (253), 3–7. (In Russian)
Rymkevich, P. P. (2018) Razrabotka nauchnykh osnov i metodov prognozirovaniya termovyazkouprugikh svojstv polimernykh materialov tekstil’noj i legkoj promyshlennosti [Development of scientific foundations and methods for predicting thermoviscoelastic properties of polymer materials for textile and light industry]. PhD dissertation (Technical Sciences). Saint Petersburg, Saint Petersburg State University of Industrial Technologies and Design, 299 p. (In Russian)
Rymkevich, P. P., Gorshkov, A. S., Makarov, A. G., Romanova, A. A. (2014) Main constitutive equation of the viscoelastic behavior of unixially co-oriented polymers. Fibre Chemistry, 46 (1), 28–32. https://doi.org/10.1007/s10692-014-9555-z (In English)
Rymkevich, P. P., Gorshkov, A. S., Maksimov, V. V., Prishchepenok, O. B. (2021) Nelinejnaya reologicheskaya model’ polimernykh nitej [Nonlinear rheological model of polymer filaments]. Izvestiya vysshikh uchebnykh zavedenij. Tekhnologiya tekstil’noj promyshlennosti — Proceedings of the Higher Educational Institutions. Textile Industry Technology, 54 (4), 15–19. (In Russian)
Stalevich, A. M., Gorshkov, A. S., Romanova, A. A., Rymkevich, P. P. (2005) Ustrojstvo dlya opredeleniya dinamicheskikh kharakteristik polimernykh nitej metodom svobodnykh prodol’nykh kolebanij [Device for determining the dynamic characteristics of polymer threads using the method of free longitudinal vibrations]. Patent No. RU 2249195 C2. [Online]. Available at: https://rusneb.ru/catalog/000224_000128_0002249195_20050327_C2_RU/ (accessed 10.08.2023). (In Russian)
Zhabotinskii, A. M. (1974) Kontsentratsionnye kolebaniya [Concentration oscillations]. Moscow: Nauka Publ., 179 p. (In Russian)
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Dmitry S. Vavilov, Olga B. Prishchepenok, Pavel P. Rymkevich
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.