Three-photon absorption and photoluminescence in films of liquid-crystal polymers with embedded CdSe/ZnS quantum dots

Authors

DOI:

https://doi.org/10.33910/2687-153X-2024-5-1-3-9

Keywords:

semiconductor quantum dots, liquid-crystal polymer, up-conversion, photoluminescence, multiphoton absorption

Abstract

In this paper, we studied nonlinear absorption of infrared (IR) (1250 nm) femtosecond pulses and visible photoluminescence (PL) excited by them in liquid-crystal (LC) polymer films with embedded CdSe/ZnS core-shell type quantum dots (QDs). The dependence of nonlinear transmission on incident intensity indicated three-photon absorption in the films, with the three-photon absorption coefficient for the QD-LC polymer composite comparable with the one for bulk CdSe. The spectrum of PL excited by IR pulses coincides with one-photon excited PL spectrum. Dependence of the PL signal on the IR laser radiation power is cubic with further saturation for the spectral region from 2.10 to 2.25 eV, with saturation intensity decreasing with lower PL photon energy. The presence of the second-harmonic signal in the up-conversion spectrum results in its variation with an excitation power increase.

References

Bae, W. K., Char, K., Hur, H., Lee, S. (2008) Single-step synthesis of quantum dots with chemical composition gradients. Chemistry of Materials, 20 (2), 531–539. https://doi.org/10.1021/cm070754d (In English)

Benis, S., Cirloganu, C., Cox, N. et al. (2020) Three-photon absorption spectra and bandgap scaling in direct-gap semiconductors. Optica, 7 (8), 888–899. https://doi.org/10.1364/OPTICA.396056 (In English)

Chen, Y., Liang, H. (2014) Applications of quantum dots with upconverting luminescence in bioimaging. Journal of Photochemistry and Photobiology B: Biology, 135, 23–32. https://doi.org/10.1016/j.jphotobiol.2014.04.003 (In English)

Dutta, R., Barik, P. (2022) Upconversion and downconversion quantum dots for biomedical and therapeutic applications. In: P. Barik, S. Monal (eds.). Application of quantum dots in biology and medicine. Recent advances. Singapore: Springer Publ., pp. 229–263. https://doi.org/10.1007/978-981-19-3144-4_12 (In English)

Efros, A. L., Brus, L. E. (2021) Nanocrystal quantum dots: From discovery to modern development. ACS Nano, 15 (4), 6192–6210. https://doi.org/10.1021/acsnano.1c01399 (In English)

Golovan, L. A., Elopov, A. V., Zaitsev, V. B. et al. (2020) Photoluminescence of CdSe and CdSe/ZnS quantum dots in amorphous and liquid-crystalline polymer matrices. Polymer Science. Series A: Physics, 62 (6), 701–713. http://dx.doi.org/10.1134/S0965545X20060048 (In English)

Jung, H., Ahn, N., Klimov, V. I. (2021) Prospects and challenges of colloidal quantum dot laser diodes. Nature Photonics, 15 (9), 643–655. https://doi.org/10.1038/s41566-021-00827-6 (In English)

Kirmani, A. R., Luther, J. M., Abolhasani, M., Amassian, A. (2020) Colloidal quantum dot photovoltaics: Current progress and path to gigawatt scale enabled by smart manufacturing. ACS Energy Letters, 5 (9), 3069–3100. https://doi.org/10.1021/acsenergylett.0c01453 (In English)

Laktaev, I. D., Saidzhonov, B. M., Vasiliev, R. B. et al. (2022) Two-photon excited biexciton photoluminescence in colloidal nanoplatelets CdSe/CdS. Journal of Luminescence, 252, article 119414. https://doi.org/10.1016/j.jlumin.2022.119414 (In English)

Le, N., Kim, K. (2023) Current advances in the biomedical applications of quantum dots: Promises and challenges. International Journal of Molecular Science, 24 (16), article 12682. https://doi.org/10.3390/ijms241612682 (In English)

Litvin, A. P., Martynenko, I. V., Purcell-Milton, F. et al. (2017) Colloidal quantum dots for optoelectronics. Journal of Material Chemistry A, 5 (26), 13252–13275. https://doi.org/10.1039/C7TA02076G (In English)

Moon, B.-S., Lee, T. K., Jeon, W. C. et al. (2021) Continuous-wave upconversion lasing with a sub-10 W cm−2 threshold enabled by atomic disorder in the host matrix. Nature Communications, 12 (1), article 4437. https://doi.org/10.1038/s41467-021-24751-z (In English)

Rakovich, Yu. P., Donegan, J. F. (2008) Anti-Stokes photoluminescence in semiconductor nanocrystal quantum dots. In: A. L. Rogach (ed.). Semiconductor nanocrystal quantum dots. Vienna: Springer Publ., pp. 257–275. http://dx.doi.org/10.1007/978-3-211-75237-1_9 (In English)

Shandryuk, G. A., Matukhina, E. V., Vasil’ev, R. B. et al. (2008) Effect of H-bonded liquid crystal polymers on CdSe quantum dot alignment within nanocomposite. Macromolecules, 41 (6), 2178–2185. http://dx.doi.org/10.1021/ma701983y (In English)

Tselikov, G. I., Timoshenko, V. Yu., Golovan, L. A. et al. (2015) Role of the polymer matrix on the photoluminescence of embedded CdSe quantum dots. ChemPhysChem, 16 (5), 1071–1078. http://dx.doi.org/10.1002/cphc.201402913 (In English)

Wang, F., He, M., Huang, B. et al. (2023) Band gap engineering improves three-photon luminescence of quantum dots for deep brain imaging. Analytical Chemistry, 95 (29), 10947–10956. https://doi.org/10.1021/acs.analchem.3c00845 (In English)

Ye, Z., Lin, X., Wang, N. et al. (2021) Phonon-assisted up-conversion photoluminescence of quantum dots. Nature Communications, 12 (1), article 4283. https://doi.org/10.1038/s41467-021-24560-4 (In English)

Zhou, W., Shang, Y., Garcia de Arquer, F. P. et al. (2020) Solution-processed upconversion photodetectors based on quantum dots. Nature Electronics, 3 (5), 251–258. https://doi.org/10.1038/s41928-020-0388-x (In English)

Published

11.03.2024

Issue

Section

Condensed Matter Physics