Uniaxial pressure modulation of two-dimensional materials: Insights into the structure and electronic properties of MoTe2 and Sb2Te3
DOI:
https://doi.org/10.33910/2687-153X-2024-5-1-30-38Keywords:
2D semiconductors, van der Waals interaction, DFT, uniaxial pressure, MoTe2, Sb2Te3, structural transitionsAbstract
This research focuses on DFT modeling of the effects of uniaxial pressure on the electronic and structural properties of two-dimensional materials, such as MoTe2 and Sb2Te3. Special attention is given to the reconfiguration of the van der Waals (vdW) gap. Intuitively, the application of uniaxial pressure is expected to reduce the distance between layers, leading to a transition from 2D to 3D. Investigations under uniaxial pressure on Sb2Te3 revealed metallization at 3 GPa. Further pressure increase induces a phase transition at 7 GPa, resulting in the disappearance of the vdW gap in the new phase. However, a transition to a bulk phase does not always occur. In the case of MoTe2, pressure leads to an isostructural transition to a metallic state at 10 GPa. A further increase in pressure to 37 GPa causes a phase transition to a twodimensional structure with a change in the orientation of the vdW gap. It is crucial to note that this MoTe2 case is analogous to the situation observed in GaSe after relaxation, which is also the subject of the study.
References
Barzilai, J., Borwein, J. M. (1988) Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8(1), 141–148. https://doi.org/10.1093/imanum/8.1.141 (In English)
Benck, J. D., Hellstern, T. R., Kibsgaard, J. et al. (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. Acs Catalysis, 4 (11), 3957‒3971. https://doi.org/10.1021/cs500923c (In English)
Bera, A., Singh, A., Gupta, S. N. et al. (2020) Pressure-induced isostructural electronic topological transitions in 2H-MoTe2: X-ray diffraction and first-principles study. Journal of Physics: Condensed Matter, 33 (6), article 065402. https://doi.org/10.1088/1361-648X/abaeac (In English)
Bernevig, B. A. (2013) Topological insulators and topological superconductors. Princeton: Princeton University Press, 260 p. (In English)
Bernevig, B. A., Hughes, T. L., Zhang, S. C. (2006) Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314 (5806), 1757‒1761. https://www.science.org/doi/10.1126/science.1133734 (In English)
Chen, Y. L., Analytis, J. G., Chu, J.-H. et al. (2009) Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 325 (5937), 178‒181. https://doi.org/10.1126/science.1173034 (In English)
Clark, S. J., Segall, M. D., Pickard, C. J. et al. (2005) First principles methods using CASTEP. Zeitschrift fur Kristallographie-Crystalline Materials, 220 (5-6), 567‒570. https://doi.org/10.1524/zkri.220.5.567.65075 (In English)
Ernzerhof, M., Scuseria, G. E. (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. The Journal of Chemical Physics, 110 (11), 5029‒5036. https://doi.org/10.1063/1.478401 (In English)
Fan, X., Chang, C.-H., Zheng, W. T. et al. (2015) The electronic properties of single-layer and multilayer MoS2 under high pressure. The Journal of Physical Chemistry C, 119 (19), 10189‒10196. https://doi.org/10.1021/acs.jpcc.5b00317 (In English)
Gao, M.-R., Xu, Y.-F., Jiang, J., Yu, S.-H. (2013) Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 42 (7), 2986‒3017. https://doi.org/10.1039/C2CS35310E (In English)
Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27 (15), 1787‒1799. https://doi.org/10.1002/jcc.20495 (In English)
Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132 (15). https://doi.org/10.1063/1.3382344 (In English)
Grimme, S., Ehrlich, S., Goerigk, L. (2011) Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32 (7), 1456‒1465. https://doi.org/10.1002/jcc.21759 (In English)
Johnson, E. R., Keinan, S., Mori-Sanchez, P. et al. (2010) Revealing noncovalent interactions. Journal of the American Chemical Society, 132 (18), 6498‒6506. https://doi.org/10.1021/ja100936w (In English)
Kane, C. L., Mele, E. J. (2005a) Quantum spin Hall effect in graphene. Physical Review Letters, 95 (22), article 226801. https://doi.org/10.1103/PhysRevLett.95.226801 (In English)
Kane, C. L., Mele, E. J. (2005b) Z2 topological order and the quantum spin Hall effect. Physical Review Letters, 95 (14), article 146802. https://doi.org/10.1103/PhysRevLett.95.146802 (In English)
Konig, M., Wiedmann, S., Brune, C. et al. (2007). Quantum spin Hall insulator state in HgTe quantum wells. Science, 318 (5851), 766‒770. https://doi.org/10.1126/science.1148047 (In English)
Lee, E., Kim, J., Bhoyate, S. et al. (2020) Realizing scalable two-dimensional MoS2 synaptic devices for neuromorphic computing. Chemistry of Materials, 32 (24), 10447‒10455. https://doi.org/10.1021/acs.chemmater.0c03112 (In English)
Lei, W., Wang, W., Ming, X. et al. (2020) Structural transition, metallization, and superconductivity in quasi-twodimensional layered PdS2 under compression. Physical Review B, 101 (20), article 205149. https://doi.org/10.1103/PhysRevB.101.205149 (In English)
Li, P., Yuan, K., Lin, D.-Y. et al. (2019) p-MoS2/n-InSe van der Waals heterojunctions and their applications in all-2D optoelectronic devices. RSC Advances, 9 (60), 35039‒35044. https://doi.org/10.1039/C9RA06667E (In English)
Mu, C., Sun, X., Chang, Y. et al. (2021) High-performance flexible all-solid-state micro-supercapacitors based on two-dimensional InSe nanosheets. Journal of Power Sources, 482, article 228987. https://doi.org/10.1016/j.jpowsour.2020.228987 (In English)
Otero-de-la-Roza, A., Blanco, M. A., Pendas, A. M., Luana, V. (2009) Critic: A new program for the topological analysis of solid-state electron densities. Computer Physics Communications, 180 (1), 157‒166. https://doi.org/10.1016/j.cpc.2008.07.018 (In English)
Otero-de-la-Roza, A., Johnson, E. R., Luana, V. (2014) Critic2: A program for real-space analysis of quantum chemical interactions in solids. Computer Physics Communications, 185 (3), 1007‒1018. https://doi.org/10.1016/j.cpc.2013.10.026 (In English)
Pan, H., Cao, L., Chu, H. et al. (2019) Broadband nonlinear optical response of InSe nanosheets for the pulse generation from 1 to 2 μm. ACS Applied Materials & Interfaces, 11 (51), 48281‒48289. https://doi.org/10.1021/acsami.9b18632 (In English)
Peng, X., Peng, L., Wu, C., Xie, Y. (2014) Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 43 (10), 3303‒3323. https://doi.org/10.1039/C3CS60407A (In English)
Pumera, M., Sofer, Z., Ambrosi, A. (2014) Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2 (24), 8981‒8987. https://doi.org/10.1039/C4TA00652F (In English)
Qi, X.-L., Zhang, S.-C. (2011) Topological insulators and superconductors. Reviews of Modern Physics, 83 (4), article 1057. https://doi.org/10.1103/RevModPhys.83.1057 (In English)
Raty, J.-Y., Noe, P. (2020) Ovonic threshold switching in Se-Rich GexSe1 − x glasses from an atomistic point of view: The crucial role of the metavalent bonding mechanism. Physica Status Solidi (RRL), 14 (5), article 1900581. https://doi.org/10.1002/pssr.201900581 (In English)
Singh, B., Prasad, R. (2016) Spin-texture of the non-trivial surface state of topological insulator Sb2Te3. Quantum Matter, 5 (3), 362‒364. https://doi.org/10.1166/qm.2016.1317 (In English)
Stepanov, R., Gerega, V., Suslov, A., Kolobov, A. (2023a) Uniaxial pressure-induced 2D–1D dimensionality change in GaSe and related materials. Physica Status Solidi (RRL), 17 (8), article 2200430. https://doi.org/10.1002/pssr.202200430 (In English)
Stepanov, R. S., Marland, P. I., Kolobov, A. V. (2023b) Compositional and structural disorder in two-dimensional AIIIBVI materials. Crystals, 13 (8), article 1209. https://doi.org/10.3390/cryst13081209 (In English)
Tominaga, J., Kolobov, A. V., Fons, P. J. et al. (2015) Giant multiferroic effects in topological GeTe-Sb2Te3 superlattices. Science and Technology of Advanced Materials, 16 (1), article 014402. https://doi.org/10.1088/1468-6996/16/1/014402 (In English)
Wang, H., Feng, H., Li, J. (2014) Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small, 10 (11), 2165‒2181. https://doi.org/10.1002/smll.201303711 (In English)
Zhao, K., Wang, Y., Sui, Y. et al. (2015) First principles study of isostructural phase transition in Sb2Te3 under high pressure. Physica Status Solidi (RRL), 9 (6), 379‒383. https://doi.org/10.1002/pssr.201510091 (In English)
Zhao, X.-M., Liu, H.-Y., Goncharov, A. F. et al. (2019) Pressure effect on the electronic, structural, and vibrational properties of layered 2H – MoTe2. Physical Review B, 99 (2), article 024111. https://doi.org/10.1103/PhysRevB.99.024111 (In English)
Zheng, Y., Song, W., Song, Z. et al. (2023) A complicated route from disorder to order in antimony-tellurium binary phase change materials. Advanced Science, article 2301021. https://doi.org/10.1002/advs.202301021 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Roman S. Stepanov
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.