As4Se4 crystal versus As4Se4 molecule: A plane wave DFT study of the geometric and electronic structure

Authors

DOI:

https://doi.org/10.33910/2687-153X-2024-5-2-91-103

Keywords:

chalcogenides, geometric and electronic structure, chemical bonding, As4Se4, molecule, molecular crystal, DFT method

Abstract

Сhalcogenide crystals reveal a wide range of changes in chemical and physical properties under band gap light illumination. A majority of these properties are determined by the electronic structure. However, to date there are only a few theoretical articles on the electronic structure of the As4Se4 molecule and only two on the As4Se4 crystal. We have studied, for the first time, the geometric and electronic structure of the As4Se4 crystal versus the As4Se4 molecule in the framework of a periodic model by the DFT method within the same approximations. Equilibrium bond lengths and bond angles were calculated together with charge density differences, Mulliken, Lowdin and Bader charges, and also Mulliken overlap populations, and were compared for the crystal and the molecule. A character of chemical bonding in the As4Se4 crystal versus the As4Se4 molecule was analyzed. The bandstructure DFT calculations were carried out and demonstrated that the As4Se4 crystal is an indirect-gap semiconductor.

References

Anderson, P. W. (1969) Localized orbitals for Molecular Quantum Theory. I. The Huckel Theory. Physical Review, 181 (1), 25–32. https://doi.org/10.1103/PhysRev.181.25 (In English)

Babić, D., Rabii, S. (1988) Self-consistent-field Xα scattered-wave calculation of the electronic structure of arsenic chalcogenide molecules. Physical Review B, 38 (15), 10490–10498. https://doi.org/10.1103/PhysRevB.38.10490 (In English)

Babić, D., Rabii, S., Bernholc, J. (1989) Structural and electronic properties of arsenic chalcogenide molecules. Physical Review B, 39 (15), 10831–10838. https://doi.org/10.1103/PhysRevB.39.10831 (In English)

Bader, R. F. W. (1990) Atoms in molecules: A Quantum Theory. Oxford: Oxford University Press, 438 p. (In English)

Bader, R. F. W., Anderson, S. G., Duke, A. J. (1979) Quantum topology of molecular charge distributions. 1. Journal of the American Chemical Society, 101 (6), 1389–1395. https://doi.org/10.1021/ja00500a006 (In English)

Bastow, T. J., Whitfield, H. J. (1973) Crystal structure of tetra-arsenic tetraselenide. Journal of the Chemical Society, Dalton Transactions, 17, 1739–1740. https://doi.org/10.1039/DT9730001739 (In English)

Beran, G. J. O. (2016) Modeling polymorphic molecular crystals with Electronic Structure Theory. Chemical Reviews, 116 (9), 5567−5613. https://doi.org/10.1021/acs.chemrev.5b00648 (In English)

Blochl, P. E. (1994) Projector augmented-wave method. Physical Review B, 50 (24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953 (In English)

Bullett, D. W. (1975) Electronic structures of layer and chain elements by a local orbital method. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. Series 8, 32 (5), 1063–1074. https://doi.org/10.1080/14786437508221674 (In English)

Bullett, D. W. (1976a) Electronic structure of arsenic chalcogenides. Physical Review B, 14 (4), 1683–1692. https://doi.org/10.1103/PhysRevB.14.1683 (In English)

Bullett, D. W. (1976b) Density of states calculation for crystalline As and Sb. Solid State Communications, 17 (8), 965–967. https://doi.org/10.1016/0038-1098(75)90230-6 (In English)

Chen, I. (1975) Electronic structures of As4Se4 and Se8. Physical Review B, 11 (10), 3976–3982. https://doi.org/10.1103/PhysRevB.11.3976 (In English)

Cherin, P., Unger, P. (1967) The crystal structure of trigonal selenium. Inorganic Chemistry, 6 (8), 1589–1591. https://doi.org/10.1021/ic50054a037 (In English)

Cherin, P., Unger, P. (1972) Refinement of the crystal structure of α-monoclinic Se. Acta Cristallographica, B28, 313–317. https://doi.org/10.1107/S0567740872002249 (In English)

Clark, S. J., Segall, M. D., Pickard, C. J. et al. (2005) First principles methods using CASTEP. Zeitschrift fur Kristallographie — Crystalline Materials, 220 (5–6), 567–570. https://doi.org/10.1524/zkri.220.5.567.65075 (In English)

Dal Corso, A. (2014) Pseudopotentials periodic table: From H to Pu. Computational Materials Science, 95, 337–350. https://doi.org/10.1016/j.commatsci.2014.07.043 (In English)

Giannozzi, P., Andreussi, O., Brumme, T. et al. (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29 (46), article 465901. https://doi.org/10.1088/1361-648X/aa8f79 (In English)

Giannozzi, P., Baroni, S., Bonini, N. et al. (2009) QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21 (39), article 395502. https://doi.org/10.1088/0953-8984/21/39/395502 (In English)

Goldstein, P., Paton, A. (1974) The crystal and molecular structure of tetrameric arsenic selenide, As4Se4. Acta Сristallographica, B30, 915–920. https://doi.org/10.1107/S0567740874004043 (In English)

Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27 (15), 1787–1799. https://doi.org/10.1002/jcc.20495 (In English)

Elliott, S. R. (1986) A unified model for reversible photostructural effects in chalcogenide glasses. Journal of Non- Crystalline Solids, 81 (1–2), 71–98. https://doi.org/10.1016/0022-3093(86)90260-7 (In English)

Elliott, S. R. (1990) Physics of Amorphous Materials. London; New York: Longman Publ., 387 p. (In English)

Eyert, V. (1996) Comparative study on methods for convergence acceleration of iterative vector sequences. Journal of Computational Physics, 124 (2), 271–285. https://doi.org/10.1006/jcph.1996.0059 (In English)

Hamann, D. R. (2013) Optimized norm-conserving Vanderbilt pseudopotentials. Physical Review B, 88 (8), article 085117. https://doi.org/10.1103/PhysRevB.88.085117 (In English)

Hasan, S. (2021) First-principles study of the electronic structure, bonding, optical, mechanical, and thermoelectric properties of bulk chalcogenide crystals. PhD dissertation (Physics and Mathematics). Kansas, University of Missouri-Kansas City, 213 p. (In English)

Hasan, S., Baral, K., Ching, W.-Y. (2019) Total bond order density as a quantum mechanical metric for materials design: Application to chalcogenide crystals. Preprints, article 2019060199. [Online]. Available at: https://www.preprints.org/manuscript/201906.0199/v1 (accessed 20.03.2024). (In English)

Henkelman, G., Arnaldsson, A., Jonsson, H. (2006) A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36 (3), 354–360. https://doi.org/10.1016/j.commatsci.2005.04.010 (In English).

Kolobov, A. V. (2003) Photo-induced metastability in amorphous semiconductors. Hoboken: Wiley Publ., 412 p. http://dx.doi.org/10.1002/9783527602544 (In English)

Kolobov, A. V., Elliott, S. R. (1995) Reversible photo-amorphization of crystalline films of As50Se50. Journal of Non-Crystalline Solids, 189 (3), 297–300. https://doi.org/10.1016/0022-3093(95)00245-6 (In English)

Krecmer, P., Moulin, A. M., Stephenson, R. J. et al. (1997) Reversible nanocontraction and dilatation in a solid induced by polarized light. Science, 277 (5333), 1799–1802. https://doi.org//10.1126/science.277.5333.1799 (In English)

Kresse, G., Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59 (3), 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758 (In English)

Li, J., Drabold, D. A., Krishnaswami, S. et al. (2002) Electronic Structure of Glassy Chalcogenides As4Se4 and As2Se3: A Joint Theoretical and Experimental Study. Physical Review B, 88 (4), article 046803 https://doi.org/10.1103/PhysRevLett.88.046803 (In English)

Lowdin, P.-O. (1950) On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. The Journal of Chemical Physics, 18 (3), 365–375. https://doi.org/10.1063/1.1747632 (In English)

Monkhorst, H. J., Pack, J. D. (1976) Special points for Brillouin-zone integrations. Physical Review B, 13 (12), 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188 (In English)

Mulliken, R. S. (1955) Electronic Population Analysis on LCAO-MO molecular wave functions. I. The Journal of Chemical Physics, 23 (10), 1833–1840. https://doi.org/10.1063%2F1.1740588 (In English)

Owen, A. E., Firth, A. P., Ewen, P. J. S. (1985) Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors. Philosophical Magazine Part B, 52 (3), 347–362. https://doi.org/10.1080/13642818508240606 (In English)

Perdew, J. P., Burke, K., Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 (In English)

Perdew, J. P., Ruzsinszky, A., Csonka, G. I. et al. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100 (13), article 136406. https://doi.org/10.1103/PhysRevLett.100.136406 (In English)

Perdew, J. P., Zunger, A. (1981) Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23 (10), 5048–5079. https://doi.org/10.1103/PhysRevB.23.5048 (In English).

Pfrommer, B. G., Cote, M., Louie, S. G., Cohen, M. L. (1997) Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics, 131 (1), 233–240. https://doi.org/10.1006/jcph.1996.5612 (In English)

Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (1992) Numerical recipes in C: The art of scientific computing. 2nd ed. Cambridge: Cambridge University Press, 994 p. (In English)

Renninger, A. L., Averbach, B. L. (1973) Atomic radial distribution functions of As-Se glasses. Physical Review B, 8 (4), 1507–1514. https://doi.org/10.1103/PhysRevB.8.1507 (In English)

Salaneck, W. R., Liang, K. S., Paton, A., Lipari, N. O. (1975) Electronic structure of molecular arsenic chalcogenides. Physical Review B, 12 (2), 725–730 https://doi.org/10.1103/PhysRevB.12.725 (In English)

Sanchez-Portal, D., Artacho, E., Soler, J. M. (1995) Projection of plane-wave calculations into atomic orbitals. Solid State Communications, 95 (10), 685–690. https://doi.org/10.1016/0038-1098%2895%2900341-X (In English)

Sanville, E., Kenny, S. D., Smith, R., Henkelman, G. (2007) An improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 28 (5), 899–908. https://doi.org/10.1002/jcc.20575 (In English)

Schlipf, M., Gygi, F. (2015) Optimization algorithm for the generation of ONCV pseudopotentials. Computer Physics Communications, 196, 36–44. https://doi.org/10.1016/j.cpc.2015.05.011 (In English)

Schomaker, V., Stevenson, D. P. (1941) Some revisions of the covalent radii and the additivity rule for the lengths of partially ionic single covalent bonds. Journal of American Chemical Society, 63 (1), 37–40. https://doi.org/10.1021/ja01846a007 (In English)

Segall, M. D., Lindan, P. J. D., Probert, M. J. et al. (2002) First-principles simulation: Ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14 (11), 2717–2744. https://doi.org/10.1088/0953-8984/14/11/301 (In English)

Segall, M. D., Pickard, C. J., Shah, R., Payne, M. C. (2010) Population analysis in plane wave electronic structure calculations. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 89 (2), 571–577. http://dx.doi.org/10.1080/002689796173912 (In English)

Segall, M. D., Shah, R., Pickard, C. J., Payne, M. C. (1996) Population analysis of plane-wave electronic structure calculations of bulk materials. Physical Review B, 54 (23), 16317–16320. https://doi.org/10.1103/PhysRevB.54.16317 (In English)

Shanno, D. F. (1978) Conjugate gradient methods with inexact searches. Mathematics of Operations Research, 3 (3), 244–256. https://doi.org/10.1287/moor.3.3.244 (In English)

Shimakawa, K., Yoshida, N., Ganjoo, A. et al. (1998) A model for the photostructural changes in amorphous chalcogenides. Philosophical Magazine Letters, 77 (3), 153–158. http://dx.doi.org/10.1080/095008398178598 (In English)

Smail, E. J., Sheldrick, G. M. (1974) Tetra-arsenic Tetraselenide. Acta Cristallographica, B29, 2014–2016. https://doi.org/10.1107/S0567740873005972 (In English)

Tanaka, K. (2001) Chalcogenide Glasses. In: Encyclopedia of Materials: Science and Technology. 2nd ed. Oxford: Elsevier Publ., pp. 1123–1131. https://doi.org/10.1016/B0-08-043152-6/00210-2 (In English)

Tanaka, K., Yamabe, T., Tachibana, A. et al. (1978) Electronic structures of tetrasulfur tetranitride, tetraarsenic tetrasulfide, and tetraarsenic tetraselenide, and their anionic species. Journal of Physical Chemistry, 82 (19), 2121–2126. https://doi.org/10.1021/j100508a013 (In English)

Tang, W., Sanville, E., Henkelman, G. (2009) A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21 (8), article 084204. http://dx.doi.org/10.1088/0953-8984/21/8/084204 (In English)

Van Setten, M. J., Giantomassi, M., Bousquet, E. et al. (2018) The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Computer Physics Communications, 226, 39–54. https://doi.org/10.1016/j.cpc.2018.01.012 (In English)

Yang, C. Y., Paesler, M. A., Sayers, D. E. (1987) Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films. Physical Review B, 36 (17), 9160–9167. https://doi.org/10.1103/PhysRevB.36.9160 (In English)

Published

24.06.2024

Issue

Section

Physics of Semiconductors