Field dependence of the initiation time of electrical trees in polymer insulation

Authors

DOI:

https://doi.org/10.33910/2687-153X-2024-5-4-187-194

Keywords:

polymer insulation, electrical trees, inception time of trees, maximum local electric field strength, threshold parameters of trees initiation, catastrophe theory, fold catastrophe

Abstract

The article analyses the known expressions that describe the field dependence of the inception time of electrical trees in polymer insulation. It also highlights the need to modify these expressions to correctly determine the threshold parameters of tree initiation. We used the methods of catastrophe theory to develop the equation that describes the dependence of the tree inception time in polymer dielectrics on the value of the maximum local electric field strength. The parameters of this equation for epoxy and polyethylene insulation are determined. A good agreement has been established between the literature experimental data and the field dependencies of the inception time of trees constructed according to the proposed equation. The geometric properties of the fold catastrophe function, which characterizes the regularities of the change in the time of initiation of electrical trees in polyethylene insulation, are considered.

References

Blythe, T., Bloor, D. (2005) Electrical properties of polymers. 2nd ed. Cambridge: Cambridge University Press, 480 p. (In English)

Borisova, M. E., Kojkov, S. N. (1979) Fizika dielektrikov [Physics of dielectrics]. Leningrad: Leningrad University Publ., 240 p. (In Russian)

Borisova, M. E., Marchenko, M. S. (1998) Elektricheskaya prochnost’ plenok poliimida [Electric strength of polyimide films]. Elektrotekhnika, 5, 4–6. (In Russian)

Cai, Z., Wang, X., Li, L., Hong, W. (2019) Electrical treeing: A phase-field model. Extreme Mechanics Letters, 28, 87–95. https://doi.org/10.1016/j.eml.2019.02.006 (In English)

Dissado, L. A., Fothergill, J. C. (1992) Electrical degradation and breakdown in polymers. London: Peter Peregrinus Publ., 601 p. (In English)

Dissado, L. A., Hill, R. M. (1990) The statistics of electrical tree inception. IEEE Transactions on Electrical Insulation, 25 (4), 660–666. https://doi.org/10.1109/14.57087 (In English)

Dissado, L. A., Dodd, S. J., Champion, J. V. et al. (1997) Propagation of electrical tree structures in solid polymeric insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 4 (3), 259–279. https://doi.org/10.1109/94.598282 (In English)

Gilmore, R. (1993) Catastrophe theory for scientists and engineers. New York: Dover Publ., 666 p. (In English)

Hu, L., Xu, Y., Chen, X. et al. (2012) The electrical trees initiation at different electric field strength in XLPE cable insulation. In: Proceedings of the IEEE International symposium on electrical insulation. San Juan: IEEE Publ., pp. 14–17. https://doi.org/10.1109/ELINSL.2012.6250958 (In English)

Kuchinskij, G. S. (1979) Chastichnye razryady v vysokovol’tnykh konstruktsiyakh [Partial discharges in high-voltage structures]. Leningrad: Energiya Publ., 224 p. (In Russian)

Noguchi, S., Nakamichi, M., Oguni, K. (2020) Proposal of finite element analysis method for dielectric breakdown based on Maxwell’s equations. Computer Methods in Applied Mechanics and Engineering, 371, article 113295. https://doi.org/10.1016/j.cma.2020.113295 (In English)

Sitole, S., Nyamupangedengu, C. (2020) Comparing electrical tree inception in epoxy and polyethylene using Fowler-Nordheim based model. In: B. Nemeth (ed.). Proceedings of the 21st International symposium on high voltage engineering. ISH 2019. Lecture notes in electrical engineering. Vol. 599. Cham: Springer Publ., pp. 1303–1313. https://doi.org/10.1007/978-3-030-31680-8_125 (In English)

Tanaka, T., Greenwood, A. (1978) Effects of charge injection and extraction on tree initiation in polyethylene. IEEE Transactions on Power Apparatus and Systems, PAS-97 (5), 1749–1759. https://doi.org/10.1109/TPAS.1978.354668 (In English)

Tumusova, A. N., Kapralova, V. M., Sudar, N. T. (2020) Impulse and DC breakdown strength of polypropylene thin film. Physics of Complex Systems, 1 (2), 56–60. https://doi.org/10.33910/2687-153X-2020-1-2-56-60 (In English)

Wang, Q., Deng, Y., Yap, M. et al. (2023) Electrical tree modelling in dielectric polymers using a phase-field regularized cohesive zone model. Materials & Design, 235, article 112409. https://doi.org/10.1016/j.matdes.2023.112409 (In English)

Zakrevskii, V. A., Pakhotin, V. A., Sudar’, N. T. (2020) Lifetime of polymers in AC electric field. Technical Physics, 65 (2), 238–242. https://doi.org/10.1134/S1063784220020255 (In English)

Published

20.12.2024

Issue

Section

Condensed Matter Physics