Numerical simulations of Gaussian white noise and field-induced phase transition in bulk antiferroelectrics using parameters of ammonium dihydrogen phosphate
DOI:
https://doi.org/10.33910/2687-153X-2025-6-1-35-48Keywords:
Gaussian white noise, stochastic fourth-order Runge — Kutta (SRK4) method, dynamical phase transition, antiferroelectrics, ferroelectricsAbstract
This paper presents phenomenological and numerical studies of Gaussian white noise and fieldinduced dynamical phase transitions in bulk antiferroelectrics (AFE), focusing on the delayed transition from AFE to ferroelectric (FE) states. The steady states of the AFE are formulated by applying the calculus of variations to the AFE thermodynamic potential, in the absense of external noise. Stochastic relaxation equations for the AFE are then derived using the Landau — Khalatnikov equation, where the AFE thermodynamic potential accounts for both Gaussian white noise and a sinusoidal time-dependent electric field. These equations are solved numerically using the stochastic fourth-order Runge — Kutta (SRK4) method. The results indicate that, for an applied field amplitude of 97% of the transition amplitude, additional Gaussian white noise with amplitudes < 8% of the applied field induces delayed AFE to FE phase transitions, with the time delay inversely proportional to the noise amplitudes.
References
Alexandrov, D. V., Bashkirtseva, I. A., Ryashko, L. B. (2018) Noise-induced transitions and shifts in a climate–vegetation feedback model. Royal Society Open Science, 5 (4), article 171531. http://dx.doi.org/10.1098/rsos.171531 (In English)
Benzi, R., Sutera, A., Vulpiani, A. (1981) The mechanism of stochastic resonance. Journal of Physics A: Mathematical and General, 14 (11), L453–L457. https://doi.org/10.1088/0305-4470/14/11/006 (In English)
Berglund, N. (2016) Noise-induced phase slips, log-periodic oscillations, and the Gumbel distribution. Markov Processes and Related Fields, 22 (3), 467–505. https://hal.science/hal-00967427v2 (In English)
Cao, F. J., Wood, K., Lindenberg, K. (2007) Noise-induced phase transitions in field-dependent relaxational dynamics: The Gaussian ansatz. Physical Review E, 76 (5), article 051111. https://doi.org/10.1103/PhysRevE.76.051111 (In English)
Carrillo, O., Ibanes, M., Garcia-Ojalvo, J. et al. (2003) Intrinsic noise-induced phase transitions: Beyond the noise interpretation. Physical Review E, 67 (4), article 046110. https://doi.org/10.1103/PhysRevE.67.046110 (In English)
Dagvadorj, G., Fellows, J. M., Matyjaśkiewicz, S. et al. (2015) Nonequilibrium phase transition in a two-dimensional driven open quantum system. Physical Review X, 5 (4), article 041028. https://doi.org/10.1103/PhysRevX.5.041028 (In English)
Garcia-Ojalvo, J., Sancho, J. M. (1999) Noise in Spatially Extended Systems. New York: Springer Publ., 307 p. (In English)
Gardiner, C. W. (1985) Handbook of stochastic methods: For physics, chemistry and the natural sciences. 2nd ed. Berlin: Springer Publ., 442 p. (In English)
Ghosh, P. K., Barik, D., Ray, D. S. (2005) Noise-induced transition in a quantum system. Physics Letters A, 342 (1–2), 12–21. https://doi.org/10.1016/j.physleta.2005.04.097 (In English)
Henkel, M., Pleimling, M. (2010) Non-equilibrium phase transitions. Vol. 2: Ageing and dynamical scaling far from equilibrium. Dordrecht: Springer Publ., 544 p. (In English)
Jin, Y., Xu, P. (2020) Noise-induced transitions and resonances in a delayed triple-well potential system. In: W. Lacarbonara, B. Balachandran, J. Ma et al. (eds.). Nonlinear Dynamics of Structures, Systems and Devices: Proceedings of the First International Nonlinear Dynamics Conference (NODYCON 2019). Cham: Springer Publ., pp. 523–531. https://doi.org/10.1007/978-3-030-34713-0_52 (In English)
Khodabin, M., Rostami, M. (2015) Mean square numerical solution of stochastic differential equations by fourth order Runge-Kutta method and its application in the electric circuits with noise. Advances in Difference Equations 2015, 2015, article 62. https://doi.org/10.1186/s13662-015-0398-6 (In English)
Kramers, H. A. (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 4, 284–304. https://doi.org/10.1016/S0031-8914(40)90098-2 (In English)
Levkivskyi, I. P., Sukhorukov, E. V. (2009) Noise-induced phase transition in the electronic Mach-Zehnder interferometer. Physical Review Letters, 103, article 036801. https://doi.org/10.1103/PhysRevLett.103.036801 (In English)
Lim, S.-Ch. (2022) Numerical simulations of nonlinear and chaotic order parameter responses in bulk antiferroelectrics using ammonium dihydrogen phosphate parameter. Physics of Complex Systems, 3 (3), 122–136. https://www.doi.org/10.33910/2687-153X-2022-3-3-122-136 (In English)
Lim, S.-Ch. (2023) Calculations of Lyapunov exponents and characterizations of nonlinear dynamics in bulk antiferroelectrics. Physics of Complex Systems, 4 (4), 176–194. https://www.doi.org/10.33910/2687-153X-2023-4-4-176-194 (In English)
Lines, M. E., Glass, A. M. (1977) Principles and applications of ferroelectrics and related materials. Oxford: Oxford University Press, 664 p. (In English)
Liu, S., Li, M.-R., Zhang, S.-Z. et al. (2024) Noise-induced phase transitions in hybrid quantum circuits. Physical Review B, 110 (6), article 064323. https://doi.org/10.1103/PhysRevB.110.064323 (In English)
Nicolis, C. (1982) Stochastic aspects of climatic transitions-response to a periodic forcing. Tellus, 34 (1), 1–9. https://doi.org/10.3402/tellusa.v34i1.10781 (In English)
Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1996) Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge: Cambridge University Press, 537 p. (In English)
Schuller, B., Meistrenko, A., van Hees, H. et al. (2020) Kramers’ escape rate problem within a non-Markovian description. Annals of Physics, 412, article 168045. https://doi.org/10.1016/j.aop.2019.168045 (In English)
Toledano, P., Guennou, M. (2016) Theory of antiferroelectric phase transitions. Physical Review B, 94 (1), article 014107. https://doi.org/10.1103/PhysRevB.94.014107 (In English)
Tong, N. H., Vojta, M. (2006) Signatures of a noise-induced quantum phase transition in a mesoscopic metal ring. Physical Review Letters, 97 (1), article 016802. https://doi.org/10.1103/PhysRevLett.97.016802 (In English)
Tsimring, L. S., A. Pikovsky, A. (2001) Noise-induced dynamics in bistable systems with delay. Physical Review Letters, 87 (25), article 250602. https://doi.org/10.1103/PhysRevLett.87.250602 (In English)
Van den Broeck, C., Parrondo, J. M. R., Toral, R. (1994) Noise-induced nonequilibrium phase transition. Physical Review Letters. 73 (25), 3395–3398. https://doi.org/10.1103/PhysRevLett.73.3395 (In English)
Zhang, G., Novais, E., Baranger, H. U. (2017) Rescuing a quantum phase transition with quantum noise. Physical Review Letters, 118 (5), article 050402. https://doi.org/10.1103/PhysRevLett.118.050402 (In English)
Zhang, M.-H., Fulanović, L., Egert, S. et al. (2020) Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3. Acta Materialia, 200, 127–135. https://doi.org/10.1016/j.actamat.2020.09.002 (In English)
Zhang, M.-H., Fulanović, L., Zhao, C. H., Koruza, J. (2023) Review on field-induced phase transitions in lead-free NaNbO3-based antiferroelectric perovskite oxides for energy storage. Journal of Materiomics, 9 (1), 1–18. https://doi.org/10.1016/j.jmat.2022.09.008 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Siew-Choo Lim

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.