Thermal and laser crystallization of InSe thin films formed by vacuum thermal evaporation
DOI:
https://doi.org/10.33910/2687-153X-2025-6-2-93-103Keywords:
chalcogenide materials, binary compounds, InSe, optical properties, structural properties, laser crystallizationAbstract
Binary chalcogenides have found a wide range of applications due to the possibility of fast and reversible phase transitions, tunable band gap, and high charge carrier mobility. This paper presents the results of thermal and laser crystallization of InSe thin films deposited by vacuum thermal evaporation of synthesized material and covered with a protective SiO2 layer. The amorphous state of as-deposited InSe thin films was confirmed by Raman spectroscopy. Thermal and laser crystallization processes were studied using electrical resistivity measurements and optical microscopy respectively. The temperature and laser power ranges required for the crystallization of the InSe thin film were determined. The Raman spectroscopy showed that the degree of crystallinity of modified regions of InSe thin films can be tuned by varying the power of laser irradiation.
References
Alieva, I. I., Mamedova, N. A., Sadygov, F. M. et al. (2020) Investigation of chemical interactions in the Sb2Te3-InSe system and properties of the obtained phases. Russian Journal of Inorganic Chemistry, 65 (10), 1585–1590. http://dx.doi.org/10.1134/S0036023620100010 (In English)
Bandurin, D. A., Tyurnina, A. V., Yu, G. L. et al. (2017) High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotech, 12, 223–227. https://doi.org/10.1038/nnano.2016.242 (In English)
Bergeron, H., Guiney, L. M., Beck, M. E. et al. (2020) Large-area optoelectronic-grade InSe thin films via controlled phase evolution. Applied Physics Reviews, 7, article 041402. https://doi.org/10.1063/5.0023080 (In English)
Chang, H-C., Tu, C-L., Lin, K. et al. (2018) Synthesis of Large-Area InSe Monolayers by Chemical Vapor Deposition. Small, 14 (39), article 1802351. https://doi.org/10.1002/smll.201802351 (In English)
Choi, I. H., Yu, P. Y. (2003) Properties of phase-pure InSe films prepared by metalorganic chemical vapor deposition with a single-source precursor. Journal of Applied Physics, 93 (8), 4673–4677. https://doi.org/10.1063/1.1561584 (In English)
Dai, M., Chen, H., Feng, R. et al. (2018) A dual-band multilayer InSe self-powered photodetector with high performance induced by surface Plasmon resonance and asymmetric Schottky junction. ACS Nano, 12 (8), 8739–8747. https://doi.org/10.1021/acsnano.8b04931 (In English)
Darwish, A. A. A., El-Nahass, M. M., Bahlol, M. H. (2013) Structural and electrical studies on nanostructured InSe thin films. Applied Surface Science, 276, 210–216. https://doi.org/10.1016/j.apsusc.2013.03.068 (In English)
El-Nahass, M. M., Saleh, A-B. A., Darwish, A. A. A. Bahlol, M. H. (2012) Optical properties of nanostructured InSe thin films. Optics Communications, 285 (6), 1221–1224. https://doi.org/10.1016/j.optcom.2011.11.031 (In English)
Emery, J. Y., Brahim-Otsmane, L., Jouanne, M. et al. (1989) Growth conditions of InxSey films by molecular beam deposition. Materials Science and Engineering: B, 3 (1-2), 13–17. https://doi.org/10.1016/0921-5107(89)90172-4 (In English)
Feng, W., Wu, J., Li, X. et al. (2015) Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. Journal of Materials Chemistry C, 3, 7022–7028. https://doi.org/10.1039/C5TC01208B (In English)
Gopal, S., Viswanathan, C., Thamilselvan, M. et al. (2004) Conduction studies on electrodeposited indium selenide thin films. Ionics, 10, 300–303. https://doi.org/10.1007/BF02382835 (In English)
Khusayfan, N. M., Qasrawi, A. F., Khanfar, H. K., Alharbi, S. R. (2024) Fast crystallization of InSe thin films via pulsed laser welding technique and effect of crystallinity on the optical and dielectric properties. Physica Scripta, 99 (2), article 025988. https://doi.org/10.1088/1402-4896/ad2040 (In English)
Kobbi, B., Kesri, N. (2004) Physico-chemical and electrical properties of InSe films. Vacuum, 75 (2), 177–182. https://doi.org/10.1016/j.vacuum.2004.02.003 (In English)
Kortum, G., Braun, W. Herzog, G. (1963) Principles and techniques of diffuse-reflectance spectroscopy. Angewandte Chemie, 2 (7), 333–341. https://doi.org/10.1002/anie.196303331 (In English)
Kovalyuk, Z. D., Katerynchuk, V. M., Mintyanskii, I. V. et al. (2005). γ-Radiation influence on the photoelectrical properties of oxide–p-InSe heterostructure. Materials Science and Engineering: B, 118 (1-3), 147–149. https://doi.org/10.1016/j.mseb.2004.12.024
Lebedeva, Y. S., Smayev, M. P., Budagovsky, I. A. et al. (2023) Photoinduced Crystallization of Sb2Se3 and Ge2Sb2Te5 Chalcogenide Films. Journal of Surface Investigation, 17, 339–348. https://doi.org/10.1134/S1027451023070297 (In English)
Mangersnes, K., Foss, S. E., Thogersen, A. (2010) Damage free laser ablation of SiO2 for local contact opening on silicon solar cells using an a-Si:H buffer layer. Journal of Applied Physics, 107 (4), article 043518. http://dx.doi.org/10.1063/1.3309382 (In English)
Mustafa, F. I., Gupta, S., Goyal, N., Tripathi, S. K. (2010) Effect of indium concentration on the electrical properties of InSe alloy. Physica B: Condensed Matter, 405 (19), 4087–4091. https://doi.org/10.1016/j.physb.2010.06.006 (In English)
Olguin, D., Cantarero, A., Ulrich, C., Syassen, K. (2003) Effect of pressure on structural properties and energy band gaps of γ-InSe. Physica Status Solidi (b), 235 (2), 456–463. https://doi.org/10.1002/pssb.200301602 (In English)
Park, J-H., Afzaal, M., Helliwell, M. et al. (2003) Chemical vapor deposition of indium selenide and gallium selenide thin films from mixed Alkyl/Dialkylselenophosphorylamides. Chemistry of Materials, 15 (22), 4205–4210. https://doi.org/10.1021/cm0310420 (In English)
Prikryl, J., Mistrik, J., Krbal, M. (2022) Optical properties of as-deposited, annealed and laser-treated Ge2Sb2Te5 thin films. Optical Materials Express, 12, 2927–2937. https://doi.org/10.1364/OME.462278 (In English)
Rani, R., Dimple, D., Jena, N. et al. (2017) Controlled formation of nanostructures on MoS2 layers by focused laser irradiation. Applied Physics Letters, 110, article 083101. https://doi.org/10.1063/1.4976692 (In English)
Rublack, T., Hartnauer, S., Kappe, P. et al. (2011) Selective ablation of thin SiO2 layers on silicon substrates by femto- and picosecond laser pulses. Applied Physics A, 103, 43–50. http://dx.doi.org/10.1007/s00339-011-6352-x (In English)
Rybin, M. V., Sinelnik, A. D., Tajik, M. et al. (2021) Optically reconfigurable spherical Ge-Sb-Te nanoparticles with reversible switching. Laser & Photonics Reviews, 16 (2), article 2100253. https://doi.org/10.1002/lpor.202100253 (In English)
Smayev, M. P., Smirnov, P. A., Budagovsky, I. A. et al. (2024) Cylindrical laser beams for a-Ge2Sb2Te5 thin film modification. Journal of Non-Crystalline Solids, 633, article 122952. https://doi.org/10.1016/j.jnoncrysol.2024.122952 (In English)
Song, Ch., Huang, Sh., Wang, Ch. et al. (2020) The optical properties of few-layer InSe. Journal of Applied Physics, 128, article 060901. https://doi.org/10.1063/5.0018480 (In English)
Stepanov, R. S. (2024) Uniaxial pressure modulation of two-dimensional materials: Insights into the structure and electronic properties of MoTe2 and Sb2Te3. Physics of Complex Systems, 5, 30–38. https://doi.org/10.33910/2687-153X-2024-5-1-30-38 (In English)
Strubbe, D. A., Johlin, E. C., Kirkpatrick, T. R. et al. (2015) Stress effects on the Raman spectrum of an amorphous material: Theory and experiment on a -Si:H. Physical Review B, 92, article 241202. https://doi.org/10.1103/PhysRevB.92.241202 (In English)
Tarasov, A., Dubkov, S., Vigdrovich, E. et al. (2023) Photocatalytic reduction of CO2 over TiO2 nanowires catalyst. MATEC Web of Conferences, 376, article 01011. https://doi.org/10.1051/matecconf/202337601011 (In English)
Tedenac, P. J.-C., Vassilev, D. G. P., Daouchi, B. et al. (1997) Low-temperature Region of the In–Se System. Crystal Research and Technology, 32 (4), 605–616. https://doi.org/10.1002/crat.2170320417 (In English)
Tran-Khac, B-C., White, R., DelRio, F. Chung, K-H. (2019) Layer-by-layer thinning of MoS2 via laser irradiation. Nanotechnology, 30, article 275302. http://dx.doi.org/10.1088/1361-6528/ab11ad (In English)
Vassilev, G. P., Daouchi, B., Record, M., Tedenac, J. (1998) Thermodynamic studies of the In–Se system. Journal of Alloys and Compounds, 269, 107–115. https://doi.org/10.1016/S0925-8388(98)00007-3 (In English)
Voigt, C. A., Reingold, M., Dube, A. et al. (2024a) Molecular beam epitaxy synthesis of In2Se3 films. Journal of Vacuum Science & Technology A, 42 (3), article 032707. https://doi.org/10.1116/6.0003508 (In English)
Voigt, C. A., Tian, M., Peacock, R. et al. (2024b) Quantitative Raman and x-ray photoelectron spectroscopy of mixedphase indium selenide films. Journal of Applied Physics, 135 (21), article 215301. http://dx.doi.org/10.1063/5.0202596 (In English)
Wang, Y., Gao, J., Wei, B. et al. (2020) Reduction of the ambient effect in multilayer InSe transistors and a strategy toward stable 2D-based optoelectronic application. Nanoscale, 12, 18356–18362. https://doi.org/10.1039/D0NR04120C (In English)
Weszka, J., Daniel, P., Burian, A. M. (2000) Raman Spectra of In0.30Se0.70 Amorphous Films. Acta Physica Polonica A, 98 (5), 619–623. (In English)
Wu, M., Xie, Q., Wu, Y. et al. (2019) Crystal structure and optical performance in bulk γ-InSe single crystals. AIP Advances, 9 (2), article 025013. https://doi.org/10.1063/1.5086492 (In English)
Xie, Q., Hu, C., Xu, L. et al. (2021) Stability studies of few-layer InSe nanosheets by Raman spectroscopy. Solid State Communications, 336, article 114417. https://doi.org/10.1016/j.ssc.2021.114417 (In English)
Xin, L., He, H., Wang, X. et al. (2024) Single-crystalline indium selenide fibers by laser-induced recrystallization and their tunable whispering-gallery-mode lasing by pressure-modulating. Journal of the American Ceramic Society, 107 (9), 5801–5809. https://doi.org/10.1111/jace.19916 (In English)
Yuan, X., Mayanovic, R. A. (2017) An empirical study on Raman peak fitting and its application to Raman quantitative research. Applied Spectroscopy, 71 (10), 2325–2338. http://dx.doi.org/10.1177/0003702817721527 (In English)
Zhao, O., Frisenda, R., Wang, T., Castellanos-Gomez, A. (2019) InSe: A two-dimensional semiconductor with superior flexibility. Nanoscale, 11, 9845–9850. https://doi.org/10.1039/C9NR02172H (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mariya E. Fedyanina, Victoria B. Pestova, Dmitry V. Pepelyaev, Yana S. Lebedeva, Alexey V. Babich, Mikhail P. Smayev, Alexey V. Romashkin, Sergey I. Nesterov, Sergey A. Kozyukhin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.