Dielectric spectroscopy of a 10% solution of human immunoglobulin G at physiological temperatures. Part 1

Authors

DOI:

https://doi.org/10.33910/2687-153X-2025-6-2-69-86

Keywords:

dielectric constant of immunoglobulin G, dielectric losses of IgG, relaxation parameters of IgG, Havriliak–Negami equation, phase transitions, globule–tangle, immunoglobulins

Abstract

In this paper, the dielectric and relaxation properties of a 10% water solution of human immunoglobulin are investigated in the frequency range of 0.1 Hz to 15 MHz at temperatures between 35 and 39.7 °C. The frequency dependences of the dielectric loss factor ε" were obtained, revealing three maxima in the dispersion regions ε'. These maxima were approximated by the Havriliak–Negami equation. For each relaxation process, the parameters α, β, and τ0 were calculated at different temperatures, and the time distribution functions of the relaxers, G(t), were derived. The paper proposes possible interpretations of the kinetic units responsible for these processes and discusses potential phase transitions within the system.

References

Annus, P., Min, M. (eds.). (2021) Bioimpedance and Spectroscopy. New York: Academic Press, 454 p. (In English)

Bartenev, G. M., Barteneva, A. G. (1992) Relaksatsionnye svojstva polimerov [Relaxation properties of polymers]. Moscow: Khimiya Publ., 384 p. (In Russian)

Birshtein, T. M., Ptitsyn, O. B. (1964) Konformatsii makromolekul [Conformations of macromolecules]. Moscow: Nauka Publ., 392 p. (In Russian)

Blythe, T., Bloor, D. (2005) Electrical properties of polymers. 2nd ed. Cambridge: Cambridge University Publ., 506 p. (In English)

Borisova, M. E., Kojkov, S. N. (1979) Fizika dielektrikov [Physics of dielectrics]. Leningrad: Leningrad State University Publ., 240 p. (In Russian)

Dashevsky, V. G. (1987) Konformatsionnij analiz makromolekul [Conformational analysis of macromolecules]. Moscow: Nauka Publ., 288 p. (In Russian)

Finkelstein, A. V. (2014) Fizika belkovykh molekul [Physics of protein molecules]. Moscow; Izhevsk: Institute of Computer Research Publ., 424 p. (In Russian)

Flory, P. J. (1969) Statistical mechanics of chain molecules. New York; London; Sydney; Toronto: John Wiley & Sons Publ., 440 p. (In English)

Frohlich, H. (1958) Theory of dielectrics. Dielectric constant and dielectric loss. 2nd ed. Oxford: Clarendon Press, 194 p. (In English)

Gorokhovatskiy, Yu. A., Karulina, E. A., Temnov, D. E. (2013) Fizika polimernikh dielektrikov [Physics of polymer dielectrics]. Saint Petersburg: Herzen State Pedagogical University of Russia Publ., 124 p. (In Russian)

Gotlib, Y. I., Darinskj, A. A., Svetlov, Yu. E. (1986) Fizicheskaya kinetika makromolekul [Physical kinetics of macromolecules]. Leningrad: Khimiya Publ., 272 p. (In Russian)

Grosberg, A. Yu., Khokhlov, A. R. (1989) Statisticheskaya fizika makromolekul [Statistical physics of macromolecules]. Moscow: Nauka Publ., 344 p. (In Russian)

Kaplan, I. G. (1982) Vvedenie v teoriyu mezhmolekularnykh vzaimodejstvij [Introduction to the theory of intermolecular interactions]. Moscow: Nauka Publ., 312 p. (In Russian)

Kremer, F., Schonhals, A. (eds.). (2003) Broadband dielectric spectroscopy. Berlin; Heidelberg: Springer Publ., 729 р. https://doi.org/10.1007/978-3-642-56120-7 (In English)

Krishtalik, L. I. (2012) Belki kak spetsificheskaya polyarnaya sreda protsessov perenosa zaryada [Proteins as a specific polar medium of charge transfer processes]. Uspexi Fizicheskix Nauk — Physics–Uspekhi, 182 (12), 1275–1300. https://doi.org/10.3367/UFNr.0182.201212b.1275 (In Russian)

Litman, G. W., Good, R. A. (eds.) (1978) Immunoglobulins. New York; London: Plenum Medical Book Company Publ., 410 p. (In English)

Orville-Thomas, W. J. (ed.). (1974) Internal rotation in molecules. New York; London; Sydney; Toronto: John Wiley & Sons Publ., 606 p. (In English)

Raicu, V., Feldman, Y. (eds.). (2015) Dielectric Relaxation in biological systems: Physical principles, methods, and applications. Oxford: Oxford University Press, 388 p. (In English).

Salnikova, Zh. A., Kononov, A. A. (2020) Derivation of the Havriliak—Negami equation for the complex electrical modulus. AIP Conference Proceedings, 2308 (1), 030017. https://doi.org/10.1063/5.0034028 (In English)

Salnikova, Zh. A., Kononov, A. A., Smirnov, A. P., Castro, R. A. (2025) Shirokopolosnaya dielektricheskaya spektroskopiya rastvora albumina cheloveka pri fiziologicheskikh temperaturakh [Broadband dielectric spectroscopy of human albumin solution at physiological temperatures]. Zhurnal Tekhnicheskoj fiziki — Technical Physics, 95 (6), 1224–1233. https://doi.org/10.61011/JTF.2025.06.60474.427-24 (In Russian)

Sazhin, B. I. (1986) (ed.). Elektricheskie svojstva polimerov [Electrical properties of polymers]. 3rd ed. Leningrad: Khimiya Publ., 224 p. (In Russian)

Vonti, A. O., Ilyinsky, A. V., Kapralova, V. M., Shadrin, E. B. (2018) Kompleksnaya priroda termicheskikh fazovykh prevraschenij v rastvorakh al’bumina [The complex nature of thermal phase transformations in albumin solutions]. Zhurnal Tekhnicheskoj fiziki — Technical Physics, 88 (6), 934–942. (In Russian)

Published

23.06.2025

Issue

Section

Condensed Matter Physics