A model of a quantum waveguide multiplexer
DOI:
https://doi.org/10.33910/2687-153X-2020-1-4-158-164Keywords:
quantum waveguide, transmission, resonance, operator extensions theory, mesoscopic systemAbstract
The paper explores the system of quantum waveguides and resonators. It suggests a solvable model of zero-width coupling windows based on the operator extensions theory in the Pontryagin space with indefinite metrics. The model self-adjoint operator is constructed explicitly, and it is similar (in some sense) to that of a physical system. We obtain an expression for the transmission coefficient for electrons and investigate its dependence on the electron energy which has a resonant character. It allows to control the electron transmission to different waveguides. The paper proposes a model of a three-channel quantum mesoscopic multiplexer.
References
Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H. (2005) Solvable models in quantum mechanics. 2nd ed. S. p.: AMS Chelsea Publishing, 850 p. (In English)
Beenakker, C. W. J., van Houten, H. (1991) Quantum transport in semiconductor nanostructures. Solid State Physics, 44, 1–228. DOI: 10.1016/S0081-1947(08)60091-0 (In English)
Buttiker, M. (1993) Capacitance, admittance, and rectification properties of small conductors. Journal of Physics: Condensed Matter, 5 (50), article 9361. DOI: 10.1088/0953-8984/5/50/017 (In English)
Derkach, V., Hassi, S., de Snoo, H. (2003) Singular perturbations of self-adjoint operators. Mathematical Physics, Analysis and Geometry, 6 (4), 349–384. DOI: 10.1023/B:MPAG.0000007189.09453.fc (In English)
Exner, P., Kovarik, H. (2015) Quantum waveguides. Berlin: Springer Publ., 422 p. DOI: 10.1007/978-3-319-18576-7 (In English)
Landauer, R. (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of research and development, 1 (3), 223–231. DOI: 10.1147/rd.13.0223 (In English)
Landauer, R. (1970) Electrical resistance of disordered one-dimensional lattices. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. Series 8, 21 (172), 863–867. DOI: 10.1080/14786437008238472 (In English)
Melikhova, A. S., Popov, I. Yu. (2017) Spectral problem for solvable model of bent nano peapod. Applicable Analysis, 96 (2), 215–224. DOI: 10.1080/00036811.2015.1120289 (In English)
Nazarov, S. A., Orive-Illera, R., Pérez-Martínez, M.-E. (2019) Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations. Networks & Heterogeneous Media, 14 (4), 733–757. DOI: 10.3934/nhm.2019029 (In English)
Pavlov, B. S. (1987) The theory of extensions and explicitly-soluble models. Russian Mathematical Surveys, 42 (6), 127–168. DOI: 10.1070/RM1987v042n06ABEH001491 (In English)
Pavlov, B. S., Popov, I. Yu., Frolov, S. V. (2001) Quantum switch based on coupled waveguides. The European Physical Journal B — Condensed Matter and Complex Systems, 21 (2), 283–287. DOI: 10.1007/s100510170203 (In English)
Popov, I. Yu. (1992) The resonator with narrow slit and the model based on the operator extensions theory. Journal of Mathematical Physics, 33 (11), 3794–3801. DOI: 10.1063/1.529877 (In English)
Popov, I. Yu. (1997) On the point and continuous spectra for coupled quantum waveguides and resonators. Reports on Mathematical Physics, 40 (3), 521–529. DOI: 10.1016/S0034-4877(97)85901-0 (In English)
Popov, I. Yu. (2013) Model of point-like window for electromagnetic Helmholtz resonator. Zeitschrift für Analysis und ihre Anwendungen, 32 (2), 155–162. DOI: 10.4171/ZAA/1478 (In English)
Popov, I. Yu., Popova, S. L. (1993a) The extension theory and resonances for a quantum waveguide. Physics Letters A, 173 (6), 484–488. DOI: 10.1016/0375-9601(93)90162-S (In English)
Popov, I. Yu., Popova, S. L. (1993b). Zero-width slit model and resonances in mesoscopic systems. Europhysics Letters, 24 (5), 373–373. DOI: 10.1209/0295-5075/24/5/009 (In English)
Shondin, Yu. G. (1988) Quantum-mechanical models in Rn associated with extensions of the energy operator in a Pontryagin space. Theoretical and Mathematical Physics, 74 (3), 220–230. DOI: 10.1007/BF01016615 (In English)
Sols, F., Macucci, M., Ravaioli, U., Hess, K. (1989) Theory for a quantum modulated transistor. Journal of Applied Physics, 66 (8), 3892–3906. DOI: 10.1063/1.344032 (In English)
Takagaki, Y., Ploog, K. (1994) Ballistic electron transmission in coupled parallel waveguides. Physical Review B, 49 (3), 1782–1788. DOI: 10.1103/PhysRevB.49.1782 (In English)
van Diejen, J. F., Tip, A. (1991) Scattering from generalized point interactions using self–adjoint extensions in Pontryagin spaces. Journal of Mathematical Physics, 32 (3), 630–641. DOI: 10.1063/1.529404 (In English)
Vorobiev, A. V., Bagmutov, A. S., Popov, A. I. (2019) On formal asymptotic expansion of resonance for quantum waveguide with perforated semitransparent barrier. Nanosystems: Physics, Chemistry, Mathematics, 10 (4), 415–419. DOI: 10.17586/2220-8054-2019-10-4-415-419 (In English)
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Alexei M. Vorobiev, Tatiana S. Yurova, Igor Yu. Popov
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.